[1]李骅,杨小丽,宋海亮,等.微生物燃料电池型人工湿地去除抗生素的效能研究[J].东南大学学报(自然科学版),2017,47(2):410-415.[doi:10.3969/j.issn.1001-0505.2017.02.034]
 Li Hua,Yang Xiaoli,Song Hailiang,et al.Study on antibiotics removal by microbial fuel cell coupled constructed wetland[J].Journal of Southeast University (Natural Science Edition),2017,47(2):410-415.[doi:10.3969/j.issn.1001-0505.2017.02.034]
点击复制

微生物燃料电池型人工湿地去除抗生素的效能研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第2期
页码:
410-415
栏目:
环境科学与工程
出版日期:
2017-03-20

文章信息/Info

Title:
Study on antibiotics removal by microbial fuel cell coupled constructed wetland
作者:
李骅1杨小丽2宋海亮1张帅1陈桐清2张昱悦1杨可昀1
1东南大学能源与环境学院, 南京 210096; 2东南大学土木工程学院, 南京 210096
Author(s):
Li Hua1 Yang Xiaoli2 Song Hailiang1 Zhang Shuai1Chen Tongqing2 Zhang Yuyue1 Yang Keyun1
1School of Energy and Environment, Southeast University, Nanjing 210096, China
2School of Civil Engineering, Southeast University, Nanjing 210096, China
关键词:
微生物燃料电池型人工湿地(MFC-CW) 抗生素 共基质 降解 产电性能
Keywords:
microbial fuel cellconstructed wetland(MFC-CW) antibiotic co-substrate degradation electricity generation
分类号:
X703.5
DOI:
10.3969/j.issn.1001-0505.2017.02.034
摘要:
考察了微生物燃料电池型人工湿地(MFC-CW)系统对不同浓度抗生素的去除效果和产电特性,以及不同共基质浓度对去除抗生素和产电的影响.结果表明,系统对磺胺甲恶唑(SMX)和四环素(TC)的去除分别以微生物降解和吸附为主.四环素具有较强的极性,进入系统后能够立即被填料稳定吸附.磺胺甲恶唑易随水流动,更容易被微生物降解.进水抗生素浓度越高,出水浓度越高,系统开路电压越低.同时,进水共基质浓度也影响MFC-CW对抗生素的去除效率和产电能力.随着系统共基质浓度的增加,系统开路电压和系统内阻逐渐增大,而系统库伦效率逐渐下降.由此表明进水抗生素浓度和共基质浓度都应控制在一定范围内,才能使系统在产电、抗生素降解方面达到优化平衡.
Abstract:
Varying concentrations of antibiotic and cosubstrates in influent were conducted to test the antibiotic removal efficiency and the microbial fuel cell(MFC)performance. The results show that the mechanisms of microbial fuel cellconstructed wetland(MFC-CW)to remove sulfamethoxazole(SMX)and tetracycline(TC)are mainly adsorption and microbial degradation, respectively. The tetracycline has a strong polarity, thus it can be absorbed immediately and stably after entering the system. Sulfamethoxazole is easier to flow with water and can easily microbial degradation. The higher concentration of antibiotic in influent is observed and detected in the effluent corresponding to the decrease of the system open circuit voltage. Meanwhile, the ability of the system on removing antibiotics is depending on the co-substrate concentration for altering performance of the system. With the increase of the co-substrate concentration, the open circuit voltage and internal resistance increase, while the coulombic efficiency of system gradually declines. Further analysis shows that when concentrations of antibiotic and cosubstrates are controlled within a certain range, the system can achieve the optimum balance in the electricity generation and the degradation of antibiotics.

参考文献/References:

[1] Huang X, Liu C X, Li K, et al. Performance of vertical up-flow constructed wetlands on swine wastewater containing tetracyclines and tet genes[J]. Water Research, 2015, 70: 109-117. DOI:10.1016/j.watres.2014.11.048.
[2] Chen J, Wei X, Liu Y, et al. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Optimization of wetland substrates and hydraulic loading[J]. Science of the Total Environment, 2016, 565: 240-248. DOI:10.1016/j.scitotenv.2016.04.176.
[3] Hijosa-Valsero M, Fink G, Schlüsener M P, et al. Removal of antibiotics from urban wastewater by constructed wetland optimization [J]. Chemosphere, 2011, 83(5): 713-719. DOI:10.1016/j.chemosphere.2011.02.004.
[4] Pawels S S R. Microbial fuel cell(MFC)technology for household waste reduction and bio-energy production[J]. Civil Engineering and Urban Planning: An International Journal, 2016, 3(2): 119-126. DOI:10.5121/civej.2016.3210.
[5] Yadav A K, Dash P, Mohanty A, et al. Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal [J]. Ecological Engineering, 2012, 47: 126-131. DOI:10.1016/j.ecoleng.2012.06.029.
[6] Corbella C, Garfí M, Puigagut J. Vertical redox profiles in treatment wetlands as function of hydraulic regime and macrophytes presence: Surveying the optimal scenario for microbial fuel cell implementation[J]. Science of the Total Environment, 2014, 470: 754-758. DOI:10.1016/j.scitotenv.2013.09.068.
[7] Chen Z, Huang Y C, Liang J H, et al. A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere [J]. Bioresource Technology, 2012, 108: 55-59. DOI:10.1016/j.biortech.2011.10.040.
[8] Fang Z, Song H, Yu R, et al. A microbial fuel cell-coupled constructed wetland promotes degradation of azo dye decolorization products[J]. Ecological Engineering, 2016, 94: 455-463. DOI:10.1016/j.ecoleng.2016.06.020.
[9] Li T, Fang Z, Yu R, et al. The performance of the microbial fuel cell-coupled constructed wetland system and the influence of the anode bacterial community [J]. Environmental Technology, 2016, 37(13): 1683-1692. DOI:10.1080/09593330.2015.1127292.
[10] Zhao Y, Collum S, Phelan M, et al. Preliminary investigation of constructed wetland incorporating microbial fuel cell: Batch and continuous flow trials[J]. Chemical Engineering Journal, 2013, 229: 364-370. DOI:10.1016/j.cej.2013.06.023.
[11] Doherty L, Zhao Y, Zhao X, et al. Nutrient and organics removal from swine slurry with simultaneous electricity generation in an alum sludge-based constructed wetland incorporating microbial fuel cell technology [J]. Chemical Engineering Journal, 2015, 266: 74-81. DOI:10.1016/j.cej.2014.12.063.
[12] 杨广伟,姜珺秋,王琨,等. 生物产电人工湿地系统对处理生活污水的效能[J]. 浙江大学学报(工学版), 2015, 49(6): 1186-1192. DOI:10.3785/j.issn.1008-973X.2015.06.026.
Yang Guangwei, Jiang Junqiu, Wang Kun, et al. Performance of sewage treatment by ingegrated system of bioelectrogenesis and constructed wetland[J]. Journal of Zhejiang University(Engineering Science), 2015, 49(6): 1186-1192. DOI:10.3785/j.issn.1008-973X.2015.06.026. (in Chinese)
[13] Cao X, Song H L, Yu C Y, et al. Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell [J]. Bioresource Technology, 2015, 189: 87-93. DOI:10.1016/j.biortech.2015.03.148.
[14] Fang Z, Song H L, Cang N, et al. Electricity production from Azo dye wastewater using a microbial fuel cell coupled constructed wetland operating under different operating conditions[J]. Biosensors and Bioelectronics, 2015, 68: 135-141. DOI:10.1016/j.bios.2014.12.047.
[15] Wu D, Huang Z, Yang K, et al. Relationships between antibiotics and antibiotic resistance gene levels in municipal solid waste leachates in shanghai, China[J]. Environmental Science & Technology, 2015, 49(7): 4122-4128. DOI:10.1021/es506081z.
[16] Dordio A V, Carvalho A J P. Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix[J]. Journal of Hazardous Materials, 2013, 252: 272-292. DOI:10.1016/j.jhazmat.2013.03.008.
[17] Gong W, Liu X, He H, et al. Quantitatively modeling soil-water distribution coefficients of three antibiotics using soil physicochemical properties[J]. Chemosphere, 2012, 89(7): 825-831. DOI:10.1016/j.chemosphere.2012.04.064.
[18] Carrasquillo A J, Bruland G L, Mackay A A, et al. Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals: Influence of compound structure[J]. Environmental Science & Technology, 2008, 42(20): 7634-7642. DOI:10.1021/es801277y.
[19] Christian T, Schneider R J, Färber H A, et al. Determination of antibiotic residues in manure, soil, and surface waters[J]. Acta Hydrochimica et Hydrobiologica, 2003, 31(1): 36-44. DOI:10.1002/aheh.200390014.
[20] Khehra M S, Saini H S, Sharma D K, et al. Biodegradation of azo dye C.I. Acid red 88 by an anoxic-aerobic sequential bioreactor[J]. Dyes and Pigments, 2006, 70(1): 1-7. DOI:10.1016/j.dyepig.2004.12.021.
[21] Freguia S, Rabaey K, Yuan Z, et al. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells[J]. Water Research, 2008, 42(6/7): 1387-1396. DOI:10.1016/j.watres.2007.10.007.
[22] Feng Y, Lee H, Wang X, et al. Continuous electricity generation by a graphite granule baffled air-cathode microbial fuel cell[J]. Bioresource Technology, 2010, 101(2): 632-638. DOI:10.1016/j.biortech.2009.08.046.
[23] Fan Y, Han S K, Liu H. Improved performance of CEA microbial fuel cells with increased reactor size[J]. Energy & Environmental Science, 2012, 5(8): 8273-8280. DOI:10.1039/c2ee21964f.
[24] Heijne A T, Liu F, van Rijnsoever L S, et al. Performance of a scaled-up microbial fuel cell with iron reduction as the cathode reaction[J]. Journal of Power Sources, 2011, 196(18): 7572-7577. DOI:10.1016/j.jpowsour.2011.04.034.

相似文献/References:

[1]彭小明,傅大放,秦庆东.竹炭表面改性对两种抗生素吸附性能的影响[J].东南大学学报(自然科学版),2014,44(6):1271.[doi:10.3969/j.issn.1001-0505.2014.06.031]
 Peng Xiaoming,Fu Dafang,Qin Qingdong.Adsorption of two antibiotics by modified bamboo-based carbon[J].Journal of Southeast University (Natural Science Edition),2014,44(2):1271.[doi:10.3969/j.issn.1001-0505.2014.06.031]

备注/Memo

备注/Memo:
收稿日期: 2016-10-08.
作者简介: 李骅(1990—),男,博士生;宋海亮(联系人),男,博士,副教授,博士生导师,songhailiang@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(41571476)、 江苏省自然科学基金资助项目(BK20141117)、江苏省重点研发计划资助项目(BE2015358).
引用本文: 李骅,杨小丽,宋海亮,等.微生物燃料电池型人工湿地去除抗生素的效能研究[J].东南大学学报(自然科学版),2017,47(2):410-415. DOI:10.3969/j.issn.1001-0505.2017.02.034.
更新日期/Last Update: 2017-03-20