[1]曹冲,黄娟,王宁,等.纳米氧化锌对湿地植物种子萌发的影响[J].东南大学学报(自然科学版),2017,47(2):416-420.[doi:10.3969/j.issn.1001-0505.2017.02.035]
 Cao Chong,Huang Juan,Wang Ning,et al.Impact of zinc oxide nanoparticles on seed germination of wetland plant[J].Journal of Southeast University (Natural Science Edition),2017,47(2):416-420.[doi:10.3969/j.issn.1001-0505.2017.02.035]
点击复制

纳米氧化锌对湿地植物种子萌发的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第2期
页码:
416-420
栏目:
环境科学与工程
出版日期:
2017-03-20

文章信息/Info

Title:
Impact of zinc oxide nanoparticles on seed germination of wetland plant
作者:
曹冲黄娟王宁闫春妮彭程
东南大学土木工程学院, 南京 210096
Author(s):
Cao Chong Huang Juan Wang Ning Yan Chunni Peng Cheng
School of Civil Engineering, Southeast University, Nanjing 210096, China
关键词:
纳米氧化锌(ZnO NPs) 湿地植物 种子发芽 幼苗生长
Keywords:
zinc oxide nanoparticles(ZnO NPs) wetland plants seed germination seedling growth
分类号:
X503.23
DOI:
10.3969/j.issn.1001-0505.2017.02.035
摘要:
为了分析纳米氧化锌(ZnO NPs)对湿地植物的影响,探究了不同浓度ZnO NPs对黑麦草、水葱、花叶芦竹种子萌发的影响.实验结果表明,当ZnO NPs浓度为 0.1,1.0 mg/L时,黑麦草、水葱、花叶芦竹的发芽率与对照组无显著差异;当ZnO NPs浓度达到10.0, 100.0 mg/L时,水葱的种子发芽率显著低于对照组.当ZnO NPs浓度为100.0 mg/L时,黑麦草、水葱、花叶芦竹种子发芽率相对于对照组分别减少了6.38%,44.71%,1.41%.在不同ZnO NPs浓度下,花叶芦竹种子萌发均与对照组无差异,但ZnO NPs对花叶芦竹种子萌发后幼苗根茎长度产生一定的影响,ZnO NPs浓度为0.1 mg/L时会促进花叶芦竹幼苗根茎的生长,而浓度为100.0 mg/L时会抑制花叶芦竹根茎的生长.可见,不同种类的湿地植物对ZnO NPs的响应不同.
Abstract:
To study the impact of ZnO nanoparticles(ZnO NPs)on wetland plants, the effects of different concentration ZnO NPs on seed germination of Lolium perenne Linn., Scirpus validus Vahl, and Arundo donax var. versicolor were investigated in the this study. The obtained results show that under the concentrations of ZnO NPs at 0.1, 1.0 mg/L, the germination rate of three kinds of wetland plant(Lolium perenne Linn., Scirpus validus Vahl, Arundo donax var. versicolor)has no significant difference compared with the control group. The seed germination rate of Scirpus validus Vahl is significantly lower than the control group when the concentrations of ZnO NPs reach to 10.0 and 100.0 mg/L. Compared with the control group, the seed germination rates of Lolium perenne Linn., Scirpus validus Vahl, Arundo donax var. versicolor decreases by 6.38%, 44.71% and 1.41%, respectively. But for Arundo donax var. versicolor, there is no difference with control group in the seed germination under the different concentrations of ZnO NPs. However, the length of rootstock suffers to a certain impact after the seed germination of Arundo donax var. versicolor under the treatment of ZnO NP stress. The concentration of ZnO NPs at 0.1 mg/L can promote the growth of rootstocks while the concentration at 100.0 mg/L inhibits the elongation of rootstocks of Arundo donax var. versicolor. Therefore, wetland plants with different species have different behaviors in response to the treatment of ZnO NPs.

参考文献/References:

[1] Thandavan T M K, Gani S M A, Wong S C, et al. Enhanced photoluminescence and raman properties of Al-doped ZnO nanostructures prepared using thermal chemical vapor deposition of methanol assisted with heated brass[J]. Plos One, 2015, 10(3): e0121756-1-e0121756-18. e0121756. DOI:10.1371/journal.pone.
  0121756.
[2] Abdolmaleki A, Mallakpour S, Borandeh S. Effect of silane-modified ZnO on morphology and properties of bionanocomposites based on poly(ester-amide)containing tyrosine linkages[J]. Polymer Bulletin, 2012, 69(1): 15-28. DOI:10.1007/s00289-011-0685-7.
[3] Gottschalk F, Sonderer T, Scholz R W, et al. Modeled environmental concentrations of engineered nanomaterials(TiO2, ZnO, Ag, CNT, fullerenes)for different regions[J]. Environmental Science & Technology, 2009, 43(24): 9216-9222. DOI:10.1021/es9015553.
[4] Maurer-Jones M A, Gunsolus I L, Murphy C J, et al. Toxicity of engineered nanoparticles in the environment[J]. Analytical Chemistry, 2013, 85(6): 3036-3049. DOI:10.1021/ac303636s.
[5] Ma X, Geiser-Lee J, Deng Y, et al. Interactions between engineered nanoparticles(ENPs)and plants: Phytotoxicity, uptake and accumulation[J]. Science of the Total Environment, 2010, 408(16): 3053-3061. DOI:10.1016/j.scitotenv.2010.03.031.
[6] Watson J, Fang T, Dimkpa C O, et al. The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties[J]. Biometals, 2015, 28(1): 101-112. DOI:10.1007/s10534-014-9806-8.
[7] Yang F, Hong F S, You W J, et al. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach[J]. Biological Trace Element Research, 2006, 110(2): 179-190. DOI:10.1385/bter:110:2:179.
[8] 罗珊,康玉凡,夏祖灵. 种子萌发及幼苗生长的调节效应研究进展[J]. 中国农学通报, 2009, 25(2): 28-32.
  Luo Shan, Kang Yufan, Xia Zhuling. Study advances of regulating effect for seed germination and sprout growing[J]. Chinese Agricultural Science Bulletin, 2009, 25(2): 28-32.(in Chinese)
[9] Mahajan P, Dhoke S K, Khanna A S. Effect of nano-ZnO particle suspension on growth of mung(Vigna radiata)and gram(Cicer arietinum)seedlings using plant agar method[J]. Journal of Nanotechnology,2011, 2011: 696535-1-696535-7. DOI:10.1155/2011/696535.
[10] Lee C W, Mahendra S, Zodrow K, et al. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana.[J]. Environmental Toxicology and Chemistry, 2010, 29(3): 669-675. DOI:10.1002/etc.58.
[11] Ghodake G, Seo Y D, Lee D S. Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa[J]. Journal of Hazardous Materials, 2011, 186(1): 952-955. DOI:10.1016/j.jhazmat.2010.11.018.
[12] Lin D, Xing B. Root uptake and phytotoxicity of ZnO nanoparticles[J]. Environmental Science & Technology, 2008, 42(15): 5580-5585. DOI:10.1021/es800422x.
[13] Yin L, Cheng Y, Espinasse B, et al. More than the ions: The effects of silver nanoparticles on Lolium multiflorum[J]. Environmental Science & Technology, 2011, 45(6): 2360-2367. DOI:10.1021/es103995x.
[14] 国际种子检验协会(ISTA). 1996国际种子检验规程[M]. 北京: 中国农业出版社,1999.
[15] Ma Y, Kuang L, He X, et al. Effects of rare earth oxide nanoparticles on root elongation of plants[J]. Chemosphere, 2010, 78(3): 273-279. DOI:10.1016/j.chemosphere.2009.10.050.
[16] Liu Q, Zhao Y, Wan Y, et al. Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level[J]. ACS Nano, 2010, 4(10): 5743-5748. DOI:10.1021/nn101430g.

备注/Memo

备注/Memo:
收稿日期: 2016-09-06.
作者简介: 曹冲(1991—),男,博士生;黄娟(联系人),女,博士,副教授,博士生导师,seu070303@163.com.
基金项目: 国家自然科学基金资助项目(51479034,5151101102)、中央高校基本科研业务费专项资金资助项目.
引用本文: 曹冲,黄娟,王宁,等.纳米氧化锌对湿地植物种子萌发的影响[J].东南大学学报(自然科学版),2017,47(2):416-420. DOI:10.3969/j.issn.1001-0505.2017.02.035.
更新日期/Last Update: 2017-03-20