参考文献/References:
[1] Liu W S, Yan X, Chen G, et al. Recent advances in thermoelectric nanocomposites[J]. Nano Energy, 2012, 1(1): 42-56. DOI:10.1016/j.nanoen.2011.10.001.
[2] Hochbaum A I, Chen R K, Delgado R D, et al. Enhanced thermoelectric performance of rough silicon nanowires[J]. Nature, 2008, 451(7175): 163-167. DOI:10.1038/nature06381.
[3] Chen G. Nanoscale energy transport and conversion [M]. Oxford,UK: Oxford University Press, 2005: 283-291.
[4] Feng X L, Li Z X,Guo Z Y. Molecular dynamics simulation of thermal conductivity of nanoscale thin silicon films[J]. Microscale Thermophysical Engineering, 2003, 7(2): 153-161. DOI:10.1080/10893950390203332.
[5] Gomes C J, Madrid M, Goicochea J V, et al. In-plane and out-of-plane thermal conductivity of silicon thin films predicted by molecular dynamics[J]. Journal of Heat Transfer, 2006, 128(11): 1114-1121. DOI:10.1115/1.2352781.
[6] 苏高辉,杨自春,孙丰瑞. 硅薄膜导热系数微尺度效应的临界尺寸[J]. 纳米技术与精密工程, 2014,12(3): 176-181. DOI:10.13494/j.npe.20130086.
Su Gaohui, Yang Zichun, Sun Fengrui. Critical size for microscale effect of silicon film thermal conductivity[J]. Nanotechnology and Precision Engineering, 2014, 12(3): 176-181. DOI:10.13494/j.npe.20130086. (in Chinese)
[7] Sun L, Murthy J Y. Domain size effects in molecular dynamics simulation of phonon transport in silicon[J]. Applied Physics Letters, 2006, 89(17): 171919. DOI:10.1063/1.2364062.
[8] Yang Y W, Liu X J,Yang J P. Nonequilibrium molecular dynamics simulation for size effects on thermal conductivity of Si nanostructures[J]. Molecular Simulation, 2008, 34(1): 51-55. DOI:10.1080/08927020701730419.
[9] Asheghi M, Kurabayashi K, Kasnavi R, et al. Thermal conduction in doped single-crystal silicon films[J]. Journal of Applied Physics, 2002, 91(8): 5079-5088. DOI:10.1063/1.1458057.
[10] Bi K D, Zhao Y Y, Chen Y F, et al. The effects of different doping patterns on the lattice thermal conductivity of solid Ar[J]. Journal of Physics and Chemistry of Solids, 2012, 73(2): 204-208. DOI:10.1016/j.jpcs.2011.11.001.
[11] Garg J, Bonini N, Kozinsky B, et al. Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: A first-principles study[J]. Physical Review Letters, 2011, 106(4): 045901. DOI:10.1103/PhysRevLett.106.045901.
[12] Wei Z, Yang J, Chen W, et al. Phonon mean free path of graphite along the c-axis[J]. Applied Physics Letters, 2014, 104(8): 081903. DOI:10.1063/1.4866416.
[13] Stillinger F H,Weber T A. Computer simulation of local order in condensed phases of silicon[J]. Physical Review B, 1985, 31(8): 5262-5271. DOI:10.1103/physrevb.31.5262.
[14] Yang N, Zhang G, Li B W. Ultralow thermal conductivity of isotope-doped silicon nanowires[J]. Nano Letters, 2008, 8(1): 276-280. DOI:10.1021/nl0725998.
[15] Schelling P K, Phillpot S R,Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity[J]. Physical Review B, 2002, 65(14): 144306. DOI:10.1103/physrevb.65.144306.
[16] Henry A S,Chen G. Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics[J]. Journal of Computational and Theoretical Nanoscience, 2008, 5(2): 141-152. DOI:10.1166/jctn.2008.2454.
[17] Alvarez F X,Jou D. Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes[J]. Applied Physics Letters, 2007, 90(8): 083109. DOI:10.1063/1.2645110.
[18] Dames C, Chen G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires[J]. Journal of Applied Physics, 2004, 95(2): 682-693.
[19] Yang F,Dames C. Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures[J]. Physical Review B, 2013, 87(3): 035437. DOI:10.1103/physrevb.87.035437.
[20] Minnich A J. Determining phonon mean free paths from observations of quasiballistic thermal transport[J]. Physical Review Letters, 2012, 109(20): 205901. DOI:10.1103/PhysRevLett.109.205901.
[21] Regner K T, Sellan D P, Su Z, et al. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance[J]. Nature Communications, 2013, 4: 1640-01-1640-07. DOI:10.1038/ncomms2630.
[22] Majumdar A. Microscale heat-conduction in dielectric thin-films[J]. Journal of Heat Transfer, 1993, 115(1): 7-16. DOI:10.1115/1.2910673.
相似文献/References:
[1]王赞,陈云飞,贺赟晖,等.基于蒙特卡洛法的硅纳米线热导率研究[J].东南大学学报(自然科学版),2009,39(2):245.[doi:10.3969/j.issn.1001-0505.2009.02.012]
Wang Zan,Chen Yunfei,He Yunhui,et al.Study on thermal conductivity of Si nanowire based on Monte Carlo model[J].Journal of Southeast University (Natural Science Edition),2009,39(3):245.[doi:10.3969/j.issn.1001-0505.2009.02.012]
[2]魏志勇,毕可东,陈云飞.石墨烯纳米带热导率的分子动力学模拟[J].东南大学学报(自然科学版),2010,40(2):306.[doi:10.3969/j.issn.1001-0505.2010.02.017]
Wei Zhiyong,Bi Kedong,Chen Yunfei.Thermal conductivity of graphene nanoribbons simulated by molecular dynamics[J].Journal of Southeast University (Natural Science Edition),2010,40(3):306.[doi:10.3969/j.issn.1001-0505.2010.02.017]
[3]潘超,刘松玉.重金属污染土的热导率特征试验研究[J].东南大学学报(自然科学版),2019,49(2):362.[doi:10.3969/j.issn.1001-0505.2019.02.023]
Pan Chao,Liu Songyu.Experimental research on thermal conductivity characteristics of heavy metal contaminated soil[J].Journal of Southeast University (Natural Science Edition),2019,49(3):362.[doi:10.3969/j.issn.1001-0505.2019.02.023]