[1]刘娜娜,程崇博,胡珺,等.微波辅助木质素醇解制备芳香化合物[J].东南大学学报(自然科学版),2017,47(3):528-533.[doi:10.3969/j.issn.1001-0505.2017.03.019]
 Liu Nana,Cheng Chongbo,Hu Jun,et al.Lignin depolymerization to aromatic compounds in isopropanol assisted by microwave heating[J].Journal of Southeast University (Natural Science Edition),2017,47(3):528-533.[doi:10.3969/j.issn.1001-0505.2017.03.019]
点击复制

微波辅助木质素醇解制备芳香化合物()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第3期
页码:
528-533
栏目:
环境科学与工程
出版日期:
2017-05-20

文章信息/Info

Title:
Lignin depolymerization to aromatic compounds in isopropanol assisted by microwave heating
作者:
刘娜娜程崇博胡珺沈德魁
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Liu Nana Cheng Chongbo Hu Jun Shen Dekui
Key Laboratory of Energy Thermal Conversation and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
木质素 微波 降解 芳香环物质
Keywords:
lignin microwave depolymerization aromatic compounds
分类号:
X703
DOI:
10.3969/j.issn.1001-0505.2017.03.019
摘要:
采用微波辅助加热,在异丙醇条件下醇解木质素.研究了反应温度对木质素液化产物产率的影响,并利用气相色谱质谱联用仪(GC/MS)、基质辅助激光解析电离飞行时间质谱(MALDI-TOF MS)和核磁共振碳谱(13C-NMR)对液体产物进行表征.结果表明,微波辅助下以异丙醇为溶剂的木质素在 120 ℃下反应,生物油的收率可达到45.35%.GC/MS结果表明,香草乙酮和乙酰丁香酮是液体产物中的主要单酚类物质.MALDI-TOF MS结果表明,液体产物中低聚体分子量主要分布在248~496之间,13C-NMR定量表征低聚体的连接键的分布,主要有β-O-4,β-5,β-β和5-5′.根据低聚体分子量与不同连接键类型,推算出解聚产物中低聚体可能的分子结构,并建立矩阵模型,最终推算出产物中低聚体的分布.
Abstract:
The effects of reaction temperature on the degradation of lignin to aromatic compounds in isopropanol were investigated by the mild microwave-assisted heating. And the liquefaction products were characterized by gas chromatography/mass spectrometer(GC/MS), matrix assisted laser desorption ionization-time of flight mass spectrometry(MALDI-TOF MS)and carbon-13 nuclear magnetic resonance(13C-NMR). The results show that the highest yield of the liquid product achieves 45.35% achieved at 120 ℃. The acetovanillone and the acetosyringone were evidenced as the prominent aromatic monomers in the liquid product. Fragments from the aromatic oligomers detected by MALDI-TOF MS were mainly located from 248 to 496. The 13C-NMR results reveal of the types and the distribution of major inter-linkages. Combining the molecular weights of oligomers with main types of linkages, possible structures of the oligomers are speculated. The distribution of the aromatic oligomers is calculated by establishing the matrix model.

参考文献/References:

[1] Cui C, Sun R, Argyropoulos D S. Fractional precipitation of softwood kraft lignin: Isolation of narrow fractions common to a variety of lignins[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(4): 959-968. DOI:10.1021/sc400545d.
[2] Wang X, Rinaldi R. Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin[J]. Chem Sus Chem, 2012, 5(8): 1455-1466. DOI:10.1002/cssc.201200040.
[3] Singh S K, Dhepe P L. Ionic liquids catalyzed lignin liquefaction: Mechanistic studies using TPO-MS, FT-IR, RAMAN and 1D, 2D-HSQC/NOSEY NMR[J]. Green Chemistry, 2016, 18(14): 4098-4108. DOI:10.1039/c6gc00771f.
[4] Guerra A, Norambuena M, Freer J, et al. Determination of arylglycerol-β-Aryl ether linkages in enzymatic mild acidolysis lignins(emal): Comparison of DFRC/31P NMR with thioacidolysis [J]. Journal of Natural Products, 2008, 71(5): 836-841. DOI:10.1021/np800080s.
[5] Kloekhorst A, Shen Y, Yie Y, et al. Catalytic hydrodeoxygenation and hydrocracking of Alcell? lignin in alcohol/formic acid mixtures using a Ru/C catalyst[J]. Biomass and Bioenergy, 2015, 80: 147-161. DOI:10.1016/j.biombioe.2015.04.039.
[6] Qu S, Dang Y, Song C, et al. Depolymerization ofoxidized lignin catalyzed by formic acid exploits an unconventional elimination mechanism involving 3c-4e bonding: A DFT mechanistic study[J]. ACS Catalysis, 2015, 5(11): 6386-6396. DOI:10.1021/acscatal.5b01095.
[7] Barta K, Warner G R, Beach E S, et al. Depolymerization of organosolv lignin to aromatic compounds over Cu-doped porous metal oxides[J]. Green Chemistry, 2014, 16(1): 191-196. DOI:10.1039/c3gc41184b.
[8] 欧阳新平,黄相振,邱学青.麦草碱木质素的微波辅助液化降解[J].燃料化学学报,2014,42(10):1212-1217. DOI:10.3969/j.issn.0253-2409.2014.10.009.
Ouyang Xinping, Huang Xiangzhen, Qiu Xueqing. Liquefaction of wheat straw alkali lignin under microwave irradiation[J]. Journal of Fuel Chemistry and Technology, 2014, 42(10): 1212-1217. DOI:10.3969/j.issn.0253-2409.2014.10.009. (in Chinese)
[9] Shen D, Liu N, Dong C, et al. Catalytic solvolysis of lignin with the modified HUSYs in formic acid assisted by microwave heating[J]. Chemical Engineering Journal, 2015, 270: 641-647. DOI:10.1016/j.cej.2015.02.003.
[10] Xiao W, Han L, Zhao Y. Comparative study of conventional and microwave-assisted liquefaction of corn stover in ethylene glycol[J]. Industrial Crops and Products, 2011, 34(3): 1602-1606. DOI:10.1016/j.indcrop.2011.05.024.
[11] Dong C, Feng C, Liu Q, et al. Mechanism on microwave-assisted acidic solvolysis of black-liquor lignin[J]. Bioresource Technology, 2014, 162: 136-141. DOI:10.1016/j.biortech.2014.03.060.
[12] Hu J, Xiao R, Shen D, et al. Structural analysis of lignin residue from black liquor and its thermal performance in thermogravimetric-Fourier transform infrared spectroscopy[J]. Bioresource Technology, 2013, 128: 633-639. DOI:10.1016/j.biortech.2012.10.148.
[13] Li Z, Cao J, Huang K, et al. Alkaline pretreatment and the synergic effect of water and tetralin enhances the liquefaction efficiency of bagasse[J]. Bioresource Technology, 2015, 177: 159-168. DOI:10.1016/j.biortech.2014.11.043.
[14] Pepiot-Desjardins P, Pitsch H, Malhotra R, et al. Structural group analysis for soot reduction tendency of oxygenated fuels[J]. Combustion and Flame, 2008, 154(1): 191-205. DOI:10.1016/j.combustflame.2008.03.017.

相似文献/References:

[1]宋其丰.微波反调制环捕获性能及延时补偿的分析[J].东南大学学报(自然科学版),1984,14(1):80.[doi:10.3969/j.issn.1001-0505.1984.01.009]
 Song Qi-fong.Analysis of Microwave Reverse-Modulated Loop Acquisition Performance And Compensation of Time Delay[J].Journal of Southeast University (Natural Science Edition),1984,14(3):80.[doi:10.3969/j.issn.1001-0505.1984.01.009]
[2]曹俊,肖刚,许啸,等.木质素热解/炭化官能团演变与焦炭形成[J].东南大学学报(自然科学版),2012,42(1):83.[doi:10.3969/j.issn.1001-0505.2012.01.016]
 Cao Jun,Xiao Gang,Xu Xiao,et al.Functional groups evolvement and charcoal formation during lignin pyrolysis/carbonization[J].Journal of Southeast University (Natural Science Edition),2012,42(3):83.[doi:10.3969/j.issn.1001-0505.2012.01.016]
[3]刘明晖,毛秀华,胡正荣.共面波导型光控微波开关的研究[J].东南大学学报(自然科学版),1996,26(3):15.[doi:10.3969/j.issn.1001-0505.1996.03.004]
 Liu Minghui,Mao Xinhua,et al.Study of Coplanar Structure Optoelectronic Microwave Switching[J].Journal of Southeast University (Natural Science Edition),1996,26(3):15.[doi:10.3969/j.issn.1001-0505.1996.03.004]
[4]王秀文,赵静,董承健,等.木材类Klason法木质素的结构表征及其热解特性[J].东南大学学报(自然科学版),2014,44(4):782.[doi:10.3969/j.issn.1001-0505.2014.04.018]
 Wang Xiuwen,Zhao Jing,Dong Chengjian,et al.Structure characterization and pyrolysis behaviour of Klason lignin from wood[J].Journal of Southeast University (Natural Science Edition),2014,44(3):782.[doi:10.3969/j.issn.1001-0505.2014.04.018]

备注/Memo

备注/Memo:
收稿日期: 2016-08-28.
作者简介: 刘娜娜(1992—),女,硕士生;沈德魁(联系人),男,博士,教授,博士生导师,101011398@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51476034)、国家重点基础研究发展计划(973计划)资助项目(2012CB215306).
引用本文: 刘娜娜,程崇博,胡珺,等.微波辅助木质素醇解制备芳香化合物[J].东南大学学报(自然科学版),2017,47(3):528-533. DOI:10.3969/j.issn.1001-0505.2017.03.019.
更新日期/Last Update: 2017-05-20