[1]叶芝慧,李昂,彭文攀.基于混合OFDM调制的认知网络快速组网技术[J].东南大学学报(自然科学版),2017,47(4):637-641.[doi:10.3969/j.issn.1001-0505.2017.04.002]
 Ye Zhihui,Li Ang,Peng Wenpan.Fast networking technologies based on hybrid OFDM modulation for cognitive radio networks[J].Journal of Southeast University (Natural Science Edition),2017,47(4):637-641.[doi:10.3969/j.issn.1001-0505.2017.04.002]
点击复制

基于混合OFDM调制的认知网络快速组网技术()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第4期
页码:
637-641
栏目:
信息与通信工程
出版日期:
2017-07-20

文章信息/Info

Title:
Fast networking technologies based on hybrid OFDM modulation for cognitive radio networks
作者:
叶芝慧1李昂2彭文攀3
1南京理工大学电子工程与光电技术学院, 南京 210094; 2南京理工大学紫金学院, 南京 210046; 3中国航空无线电电子研究所, 上海200233
Author(s):
Ye Zhihui1 Li Ang2 Peng Wenpan3
1School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2College of Zijin, Nanjing University of Science and Technology, Nanjing 210046, China
3China Aeronautical Radio Electronics Research Institute, Shanghai 200233, China
关键词:
正交频分多路复用 认知无线电 快速组网 循环平稳 混合调制
Keywords:
OFDM(orthogonal frequency division multiplexing) cognitive radio fast networking cyclo-stationary mixed modulation
分类号:
TN911
DOI:
10.3969/j.issn.1001-0505.2017.04.002
摘要:
为了使节点设备在日益复杂的网络环境下具备快速组网能力,提出一种基于信号循环谱特征的混合OFDM调制算法,并将其应用到协同认知网络中.该算法利用信号内在的循环平稳特性,并人工嵌入唯一的循环平稳标示,可以强化信号的频谱特征,从而能够快速识别出信道空闲、认知信号传输、主用户信号传输和2种信号混叠4种状态,为认知信号的快速可靠接入和退出提供保障.进一步地利用混合调制的位置来标记不同的认知网络,使认知节点可以区分来自不同网络的信号,从而使系统具备快速组网的能力.仿真结果显示,所提算法在提高频谱利用率的基础上,能够实时地辨识出节点的调制方式和网络标识号,实现了快速组网的目的.
Abstract:
To make the node device have the ability of quickly networking under complicated network environments, a hybrid OFDM(orthogonal frequency division multiplexing)modulation algorithm based on the cyclic spectrum feature of signals is proposed, and applied in cooperative cognitive networks. Utilizing inherent cyclic spectrum features and artificially embedding distinct cyclo-stationary identification, the proposed algorithm can agilely distinguish four kinds of channel states, that is, spectrum idle, master signals transmitting, secondary signal transmitting, and hybrid signals transmitting. The algorithm can strengthen the spectrum characteristics of signals, and help the nodes to access and withdraw fast and reliably. Further, by signing different cognitive networks with the locations of hybrid modulation signals, cognitive nodes can identify signals from different networks, so as to make the system have the ability of aglily networking. Simulation results show that the proposed algorithm can identify the modulation method and network sign number of nodes in real time, thus achieving the objective of agilely networking with the improved spectrum efficiency.

参考文献/References:

[1] Watts D J, Strogatz S H. Collective dynamics of “small-world” networks[J]. Nature, 1998, 393(6684): 440-442. DOI:10.1038/30918.
[2] Braca P, Goldhahn R, Ferri G, et al. Distributed information fusion in multistatic sensor networks for underwater surveillance[J]. IEEE Sensors Journal, 2016,16(11):4003-4014.DOI:10.1109/jsen.2015.2431818.
[3] Dong C L, Zhao Y, Zhang Q. Assessing the influence of an individual event in complex fault spreading network based on dynamic uncertain causality graph[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(8): 1615-1630. DOI:10.1109/TNNLS.2016.2547339.
[4] Jeffery R C.分布式网络化作战[M].于全,译.北京:北京邮电大学出版社,2006: 22-28.
[5] Dekker A H.Centralization and decentralization in network centric warfare[J]. Journal of Battlefield Technology, 2003, 6(2):23-28.
[6] den Dekker H A, Beckers N W M, Keemink A Q L, et al. Assessing the usability of remote control servos for admittance-controlled haptic finger manipulators[C]//2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics. Singapore, 2016: 1260-1265.
[7] DARPA XG Working Group. DARPA XG policy language framework, request for comments, version 1.0 [R]. Cambridge, MA, USA: BBN Technologies, 2004.
[8] Liang C C, Yu F R. Wireless network virtualization: A survey, some research issues and challenges[J]. IEEE Communications Surveys & Tutorials, 2015, 17(1): 358-380. DOI:10.1109/comst.2014.2352118.
[9] Yang M C, Li Y, Liu X F, et al. Cyclostationary feature detection based spectrum sensing algorithm under complicated electromagnetic environment in cognitive radio networks[J]. China Communications, 2015, 12(9): 35-44. DOI:10.1109/cc.2015.7275257.
[10] 彭文攀.无线频谱认知理论及组网技术的研究[D].南京:南京大学电子科学与工程学院,2012.
[11] Shen J-C, Alsusa E. An efficient multiple lags selection method for cyclostationary feature based spectrum-sensing[J]. IEEE Signal Processing Letters, 2013, 20(2): 133-136.
[12] Wang D L, Ghannouchi F M, Ding Y, et al. 70% energy saving in wireless positioning systems: Non-data-bearing OFDM transmission replaces non-pulse-shaping PN transmission[J]. IEEE Systems Journal, 2015, 9(3):664-674. DOI:10.1109/jsyst.2013.2265186.
[13] Hatfield D N, Weiser P J. Property rights in spectrum: Taking the next step[C]//2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks. Maryland,USA,2005:43-55.

备注/Memo

备注/Memo:
收稿日期: 2016-12-23.
作者简介: 叶芝慧(1967—),女,博士,副教授,yezh@njust.edu.cn.
基金项目: 国家海洋公益重大专项资助项目(201205035).
引用本文: 叶芝慧,李昂,彭文攀.基于混合OFDM调制的认知网络快速组网技术[J].东南大学学报(自然科学版),2017,47(4):637-641. DOI:10.3969/j.issn.1001-0505.2017.04.002.
更新日期/Last Update: 2017-07-20