[1]葛卓,罗庆生,贾燕,等.基于生物反射模型的四足机器人坡面运动控制与越障研究[J].东南大学学报(自然科学版),2017,47(4):697-702.[doi:10.3969/j.issn.1001-0505.2017.04.012]
 Ge Zhuo,Luo Qingsheng,Jia Yan,et al.Study on quadruped robot ramp-trotting and obstacle-crossing based on biological reflex model[J].Journal of Southeast University (Natural Science Edition),2017,47(4):697-702.[doi:10.3969/j.issn.1001-0505.2017.04.012]
点击复制

基于生物反射模型的四足机器人坡面运动控制与越障研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第4期
页码:
697-702
栏目:
自动化
出版日期:
2017-07-20

文章信息/Info

Title:
Study on quadruped robot ramp-trotting and obstacle-crossing based on biological reflex model
作者:
葛卓1罗庆生1贾燕2李华师2
1北京理工大学机电学院, 北京 100081; 2北京理工大学机械与车辆学院, 北京 100081
Author(s):
Ge Zhuo1 Luo Qingsheng1 Jia Yan2 Li Huashi2
1 School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
2 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
关键词:
四足机器人 中枢模式发生器 生物反射模型 复杂地形
Keywords:
quadruped robot central pattern generator(CPG) biological reflex model rough terrain
分类号:
TP242.6
DOI:
10.3969/j.issn.1001-0505.2017.04.012
摘要:
为了提高四足机器人在包含坡面和障碍物等复杂地形中的运动能力与环境自适应能力,在对四足机器人基本步态研究的基础上,利用生物节律运动和反射控制机理,对四足机器人的适应性行走控制模型进行了研究.建立了适用于四足机器人坡面运动以及越障运动的前庭反射和屈肌反射数学模型,根据该数学模型构建的生物反射控制器与机器人膝、髋关节CPG控制网络有机融合,构成了协调性好、整体性高的控制系统.通过Adams/Matlab联合仿真,验证了所提出控制模型的可行性与有效性.该模型能够有效地使前膝后肘式四足机器人流畅、平稳地完成上下坡运动,并具备自适应越障运动能力.
Abstract:
To improve the locomotion ability and terrain adaptive ability of a quadruped robot through complex terrains including ramps and obstacles, based on the study of quadruped robot basic gaits, a biomimetic adaptive control model for the quadruped robot is studied with the mechanisms regarding animals’ rhythmic locomotion and reflex control. The mathematical models of vestibular and flexor reflexes are established to realize trotting on a ramp and obstacle crossing. Reflex controllers derived from the aforementioned mathematical models are integrated with the central pattern generator(CPG)networks of knee and hip joints of the robot, so that a control system is created with good coordination and high degree of integrity. By co-simulation of Adams and Matlab, the feasibility and effectiveness of both the vestibular reflex model and the flexor reflex model are verified. Under the control of such control model, the quadruped robot with all outward knee joints can stably trot uphill or downhill and adaptively achieve obstacle avoidance and crossing.

参考文献/References:

[1] Kimura H, Fukuoka Y, Cohen A H. Biologically inspired adaptive walking of a quadruped robot[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1850): 153-170. DOI:10.1098/rsta.2006.1919.
[2] 张秀丽. 四足机器人节律运动及环境适应性的生物控制研究[D]. 北京: 清华大学精密仪器与机械学系, 2004.
[3] Shkolnik A, Levashov M, Manchester I R, et al. Bounding on rough terrain with the LittleDog robot[J]. The International Journal of Robotics Research, 2011, 30(2): 192-215. DOI:10.1177/0278364910388315.
[4] Kolter J Z, Ng A Y. The Stanford LittleDog: A learning and rapid replanning approach to quadruped locomotion[J]. The International Journal of Robotics Research, 2011, 30(2): 150-174. DOI:10.1177/0278364910390537.
[5] Zucker M, Ratliff N, Stolle M, et al. Optimization and learning for rough terrain legged locomotion[J]. The International Journal of Robotics Research, 2011, 30(2): 175-191. DOI:10.1177/0278364910392608.
[6] Gehring C, Bellicoso C D, Coros S, et al. Dynamic trotting on slopes for quadrupedal robots[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany, 2015: 5129-5135. DOI: 10.1109/IROS.2015.7354099.
[7] Fukuoka Y, Kimura H. Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts[J]. The International Journal of Robotics Research, 2003, 22(3): 187-202. DOI:10.1177/0278364903022003004.
[8] Spröwitz A, Tuleu A, Vespignani M, et al. Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot[J]. The International Journal of Robotics Research, 2013, 32(8): 932-950. DOI: 10.1177/0278364913489205.
[9] Heim S W, Ajallooeian M, Eckert P, et al. On designing an active tail for body-pitch control in legged robots via decoupling of control objectives[C]//Assistive Robotics: Proceedings of the 18th International Conference on CLAWAR 2015. Hangzhou, China, 2015:256-264.
[10] Arena P, Fortuna L, Frasca M, et al. Learning anticipation via spiking networks: Application to navigation control[J]. IEEE Transactions on Neural Networks, 2009, 20(2): 202-216. DOI: 10.1109/TNN.2008.2005134.
[11] Zhang X L, E M C. Adaptive walking of a quadrupedal robot based on layered biological reflexes[J]. Chinese Journal of Mechanical Engineering, 2012, 25(4): 654-664. DOI: 10.3901/CJME.2012.04.654.
[12] 鄂明成, 刘虎, 张秀丽, 等. 一种粗糙地形下四足仿生机器人的柔顺步态生成方法[J]. 机器人, 2014,36(5): 584-591. DOI:10.13973/j.cnki.robot.2014.0584.
E Mingcheng, Liu Hu, Zhang Xiuli, et al. Compliant gait generation for a quadruped bionic robot walking on rough terrains[J]. Robot, 2014, 36(5): 584-591. DOI:10.13973/j.cnki.robot.2014.0584. (in Chinese)
[13] Vonásek V, Saska M, Winkler L, et al. High-level motion planning for CPG-driven modular robots[J]. Robotics and Autonomous Systems, 2015, 68: 116-128. DOI: 10.1016/j.robot.2015.01.006.

备注/Memo

备注/Memo:
收稿日期: 2017-02-17.
作者简介: 葛卓(1988—),男,博士生;罗庆生(联系人),男,博士,教授,博士生导师, luoqsh@bit.edu.cn.
基金项目: 国家部委预研基金资助项目(40401060305).
引用本文: 葛卓,罗庆生,贾燕,等.基于生物反射模型的四足机器人坡面运动控制与越障研究[J].东南大学学报(自然科学版),2017,47(4):697-702. DOI:10.3969/j.issn.1001-0505.2017.04.012.
更新日期/Last Update: 2017-07-20