[1]郑沛娟,林迪南,宗周红,等.基于图论聚类的随机子空间模态参数自动识别[J].东南大学学报(自然科学版),2017,47(4):710-716.[doi:10.3969/j.issn.1001-0505.2017.04.014]
 Zheng Peijuan,Lin Dinan,Zong Zhouhong,et al.Automatic stochastic subspace identification of modal parameters based on graph clustering[J].Journal of Southeast University (Natural Science Edition),2017,47(4):710-716.[doi:10.3969/j.issn.1001-0505.2017.04.014]
点击复制

基于图论聚类的随机子空间模态参数自动识别()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第4期
页码:
710-716
栏目:
数学、物理学、力学
出版日期:
2017-07-20

文章信息/Info

Title:
Automatic stochastic subspace identification of modal parameters based on graph clustering
作者:
郑沛娟1林迪南2宗周红1余道兴1
1东南大学土木工程学院, 南京 210096; 2福建省建筑科学研究院福建省绿色建筑技术重点实验室, 福州 350025
Author(s):
Zheng Peijuan1 Lin Dinan2 Zong Zhouhong1 Yu Daoxing1
1School of Civil Engineering, Southeast University, Nanjing 210096, China
2Fujian Key Laboratory of Green Building Technology, Fujian Academy of Building Research, Fuzhou 350025, China
关键词:
模态参数识别 图论聚类 随机子空间法 稳定图
Keywords:
modal parameter identification graph-based cluster stochastic subspace identification method stabilization diagram
分类号:
TB122,U441.3
DOI:
10.3969/j.issn.1001-0505.2017.04.014
摘要:
为提高随机子空间法模态参数识别过程中的自动化程度,减少人为干预,提出了基于图论聚类的桥梁结构模态参数自动识别方法.首先,初步剔除由于数据精度以及噪声等引起的虚假模态;其次,采用图论聚类法,对结构模态结果依次根据基于结构频率和模态保证准则(MAC)指标定义的距离进行聚类,以自动识别出结构的真实模态.随后基于灌河大桥0.5 h的加速度数据,采用所提方法实现了结构模态参数的自动识别,并通过结构的有限元模型对识别结果进行验证.最后,将所提出的方法应用到基于灌河大桥健康监测系统采集的一年加速度数据的模态参数识别过程中,表明了该方法在桥梁结构海量加速度数据的结构模态参数自动识别中是可行的.
Abstract:
In order to improve the degree of automation in the process of modal parameter identification for bridge structures based on the stochastic subspace identification method, and reduce human intervention, an automatic modal parameter identification method based on graph clustering for bridge structure is proposed. First, some methods are adopted to initially weed out the false modes caused by the data accuracy, noise and so on. Secondly, the graph clustering theory is used to identify the structural modal parameters according to the distances defined by structural frequency and modal assurance criterion(MAC)index, respectively, so as to finish the automatic modal parameters identification. The automation modal parameters identification of the structure is realized by the proposed method based on 0.5 h acceleration data of Guanhe bridge, and the identification results are verified by the corresponding finite element model. Then, the proposed method is used to identify the modal parameters of Guanhe bridge based on one-year acceleration data from its structural health monitoring system, which indicates that the method is feasible for the modal parameter automatic identification of the bridge structure with massive acceleration data.

参考文献/References:

[1] 姜金辉, 陈国平, 张方,等. 模糊聚类法在试验模态参数识别分析中的应用[J].南京航空航天大学学报,2009,41(3):344-347. DOI:10.3969/j.issn.1005-2615.2009.03.012.
Jiang Jinhui, Chen Guoping, Zhang Fang, et al. Application of fuzzy clustering theory in experimental modal parameter identification analysis[J].Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(3): 344-347.DOI:10.3969/j.issn.1005-2615.2009.03.012. (in Chinese)
[2] 孙国富. 基于模糊聚类的模态参数自动识别[J]. 振动与冲击, 2010, 29(9): 86-88. DOI:10.3969/j.issn.1000-3835.2010.09.020.
Sun Guofu. Automatic modal parameters identification based on fuzzy clustering[J]. Journal of Vibration and Shock, 2010, 29(9): 86-88. DOI:10.3969/j.issn.1000-3835.2010.09.020. (in Chinese)
[3] Reynders E, Houbrechts J, de Roeck G. Fully automated(operational)modal analysis[J].Mechanical Systems and Signal Processing, 2012, 29: 228-250. DOI:10.1016/j.ymssp.2012.01.007.
[4] 吴春利, 刘寒冰, 王静. 模糊聚类算法稳定图应用于桥梁结构参数识别[J]. 振动与冲击, 2013, 32(4): 121-126. DOI:10.3969/j.issn.1000-3835.2013.04.024.
Wu Chunli, Liu Hanbing, Wang Jing. Parameter identification of a bridge structure based on a stabilization diagram with fuzzy clustering method[J].Journal of Vibration and Shock, 2013, 32(4): 121-126. DOI:10.3969/j.issn.1000-3835.2013.04.024. (in Chinese)
[5] 周思达,周小陈,刘莉,等. 基于模糊聚类的模态参数全因素自动验证方法[J].北京航空航天大学学报, 2015, 41(5):811-816.
  Zhou Sida, Zhou Xiaochen, Liu Li, et al. Fuzzy-clustering-based all-factor automatous validation approach of modal parameters of structures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(5): 811-816.(in Chinese)
[6] 杨凯, 于开平, 刘荣贺,等. 两种新的基于子空间跟踪的时变模态参数快速辨识算法[J]. 工程力学,2012,29(10):294-300.
  Yang Kai, Yu Kaiping, Liu Ronghe, et al. Two new fast identification algorithms of time-varying modal parameters based on subspace tracking[J]. Engineering Mechanics, 2012, 29(10):294-300.(in Chinese)
[7] 章国稳.环境激励下结构模态参数自动识别与算法优化[D]. 重庆: 重庆大学机械工程学院, 2012.
[8] 汤宝平,章国稳,陈卓. 基于谱系聚类的随机子空间模态参数自动识别[J].振动与冲击,2012,31(10): 92-96.DOI:10.3969/j.issn.1000-3835.2012.10.020.
Tang Baoping, Zhang Guowen, Chen Zhuo. Automatic stochastic subspace identification of modal parameters based on hierarchical clustering method[J]. Journal of Vibration and Shock, 2012, 31(10): 92-96. DOI:10.3969/j.issn.1000-3835.2012.10.020. (in Chinese)
[9] Magalães F, Cunha Á, Caetano E. Online automatic identification of the modal parameters of a long span arch bridge[J]. Mechanical Systems and Signal Processing, 2009, 23(2):316-329.DOI:10.1016/j.ymssp.2008.05.003.
[10] Ubertini F, Gentile C, Materazzi A L. Automated modal identification in operational conditions and its application to bridges[J]. Engineering Structures, 2013, 46: 264-278.DOI:10.1016/j.engstruct.2012.07.031.
[11] Diez A, Khoa N L D,Makki Alamdari M, et al. A clustering approach for structural health monitoring on bridges[J].Journal of Civil Structural Health Monitoring,2016,6(3): 429-445. DOI:10.1007/s13349-016-0160-0.
[12] Neu E, Janser F, Khatibi A A, et al. Fully automated operational modal analysis using multi-stage clustering[J].Mechanical Systems and Signal Processing, 2017, 84:308-323.DOI:10.1016/j.ymssp.2016.07.031.
[13] 辛峻峰.基于随机子空间法的海洋平台模态参数识别技术研究[D].青岛:中国海洋大学工程学院,2013.
[14] 钱云涛, 赵荣椿,谢维信.鲁棒聚类——基于图论和目标函数的方法[J].电子学报,1998, 26(2): 91-94. DOI:10.3321/j.issn:0372-2112.1998.02.021.
[15] 殷剑宏,吴开亚. 图论及其算法[M].合肥:中国科学技术大学出版社, 2003: 1-4.
[16] Rosen K H. 离散数学及其应用[M]. 6版. 袁崇义,等译.北京:机械工业出版社,2011: 344.
[17] 刘锁兰,王江涛,王建国,等. 一种新的基于图论聚类的分割算法[J].计算机科学,2008, 35(9): 245-247. DOI:10.3969/j.issn.1002-137X.2008.09.066.
Liu Suolan, Wang Jiangtao, Wang Jianguo, et al. New segmentation technique based on clustering of graph theory[J]. Computer Science, 2008, 35(9): 245-247. DOI:10.3969/j.issn.1002-137X.2008.09.066. (in Chinese)
[18] 樊星辰. 基于健康监测的结合梁斜拉桥安全预警方法研究[D].南京:东南大学土木工程学院,2014.

备注/Memo

备注/Memo:
收稿日期: 2017-01-16.
作者简介: 郑沛娟(1987—),女,博士生;宗周红(联系人),男,博士,教授,博士生导师,zongzh@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51378112)、江苏高校优势学科建设工程资助项目.
引用本文: 郑沛娟,林迪南,宗周红,等.基于图论聚类的随机子空间模态参数自动识别[J].东南大学学报(自然科学版),2017,47(4):710-716. DOI:10.3969/j.issn.1001-0505.2017.04.014.
更新日期/Last Update: 2017-07-20