[1]周臻,朱冬平,谢钦.矩形脉冲激励下自复位墙的摇摆响应[J].东南大学学报(自然科学版),2017,47(4):717-723.[doi:10.3969/j.issn.1001-0505.2017.04.015]
 Zhou Zhen,Zhu Dongping,Xie Qin.Rocking response of self-centering wall under rectangular pulse[J].Journal of Southeast University (Natural Science Edition),2017,47(4):717-723.[doi:10.3969/j.issn.1001-0505.2017.04.015]
点击复制

矩形脉冲激励下自复位墙的摇摆响应()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第4期
页码:
717-723
栏目:
土木工程
出版日期:
2017-07-20

文章信息/Info

Title:
Rocking response of self-centering wall under rectangular pulse
作者:
周臻朱冬平谢钦
东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 210096
Author(s):
Zhou Zhen Zhu Dongping Xie Qin
Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
自复位墙 摇摆响应 矩形脉冲 解析解 等效黏滞阻尼
Keywords:
self-centering wall rocking response rectangular pulse analytical solution equivalent viscous damp ratio
分类号:
TU352.1
DOI:
10.3969/j.issn.1001-0505.2017.04.015
摘要:
为了提高自复位墙在强震作用下的抗震性能,对其在矩形脉冲激励下的动力摇摆响应进行了研究.在假定墙体刚性和墙体-地基无滑移的基础上,建立了自复位墙的摇摆动力分析方程.引入小倾角假定对动力方程进行适当简化,并考虑墙体在摇摆过程中与基础碰撞的能量损失,通过理论推导得到了自复位墙摇摆响应的解析解.针对一个自复位墙算例,采用该方法进行动力摇摆分析,并与增量数值求解的结果进行对比验证.此外,基于动力方程中的恢复系数,给出了自复位墙等效黏滞阻尼的计算公式,研究了不同墙底基础碰撞界面材料特性对自复位墙摇摆响应的影响.结果表明:解析解能够反映墙体在矩形脉冲激励下的动力摇摆响应;自复位墙的等效黏滞阻尼随着恢复系数的增加而降低,二者基本成线性关系;墙体在摇摆过程中等效黏滞阻尼随着周期的增加而增大.
Abstract:
To improve the seismic performance of self-centering wall under strong ground motion, the rocking response of the self-centering wall under rectangular pulse is investigated. Based on the no-slipping and rigid base assumptions, dynamic equations of a self-centering wall under rectangular pulse are derived. The exact analytical solutions considering the energy dissipation in the rocking process are derived from the simplified dynamic equations with minor rocking angle assumption. A specific self-centering model is analyzed with the analytical solutions, and the results of analytical solutions are verified by the numerical solutions. Additionally, on basis of the restitution factor in equations, the method for calculating the equivalent viscous damping ratio for the self-centering wall is given as well. The influence of different materials between wall base and foundation on the rocking response of a self-centering wall is analyzed. The results show that the analytical solution can reflect the rocking behavior under rectangular pulse. The equivalent viscous damping ratio decreases with the increase of the restitution factor, and there is a linear correlation between them. With the increase of the rocking period, the equivalent viscous damping ratio increases in the rocking process.

参考文献/References:

[1] 周颖, 吕西林. 摇摆结构及自复位结构研究综述[J]. 建筑结构学报, 2011, 32(9): 1-10.
  Zhou Ying, Lü Xilin. State-of-the-art on rocking and self-centering structures[J]. Journal of Building Structures, 2011, 32(9): 1-10.(in Chinese)
[2] 冯玉龙, 吴京, 孟少平, 等. 底部带有屈曲约束支撑的摇摆墙框架结构抗震性能分析[J]. 振动与冲击,2016, 35(23): 35-40. DOI:10.13465/j.cnki.jvs.2016.23.006.
Feng Yulong, Wu Jing, Meng Shaoping, et al. Aseismic performance analysis of rocking wall frame structures with buckling-restrained braces in base[J].Journal of Vibration and Shock, 2016, 35(23): 35-40. DOI:10.13465/j.cnki.jvs.2016.23.006. (in Chinese)
[3] 谢钦, 周臻, 孟少平, 等. SMA预拉杆式自定心屈曲约束支撑的滞回性能分析[J]. 东南大学学报(自然科学版), 2014, 44(4): 799-804. DOI:10.3969/j.issn.1001-0505.2014.04.021.
Xie Qin, Zhou Zhen, Meng Shaoping, et al. Hysteretic performance analysis of self-centering buckling-restrained braces with pretensioned SMA tendons[J]. Journal of Southeast University(Natural Science Edition), 2014, 44(4): 799-804. DOI:10.3969/j.issn.1001-0505.2014.04.021. (in Chinese)
[4] Housner G W. The behavior of inverted pendulum structures during earthquakes[J]. Bulletin of the Seismological Society of America, 1963, 53(2): 403-417.
[5] Makris N, Roussos Y S. Rocking response of rigid blocks under near-source ground motions[J]. Géotechnique, 2000, 50(3): 243-262. DOI:10.1680/geot.2000.50.3.243.
[6] Zhang J, Makris N. Rocking response of free-standing blocks under cycloidal pulses[J]. Journal of Engineering Mechanics, 2001, 127(5): 473-483. DOI:10.1061/(asce)0733-9399(2001)127:5(473).
[7] Makris N, Zhang J. Rocking response of anchored blocks under pulse-type motions[J]. Journal of Engineering Mechanics, 2001, 127(5): 484-493. DOI:10.1061/(asce)0733-9399(2001)127:5(484).
[8] Dimitrakopoulos E G, DeJong M J. Overturning of retrofitted rocking structures under pulse-type excitations[J]. Journal of Engineering Mechanics, 2012, 138(8): 963-972. DOI:10.1061/(asce)em.1943-7889.0000410.
[9] Voyagaki E, Psycharis I N, Mylonakis G. Complex response of a rocking block to a full-cycle pulse[J]. Journal of Engineering Mechanics, 2013, 140(6): 04014024. DOI:10.1061/(asce)em.1943-7889.0000712.
[10] Kalliontzis D, Sritharan S, Schultz A. Improved coefficient of restitution estimation for free rocking members[J]. Journal of Structural Engineering, 2016, 142(12): 06016002.
[11] 党像梁,吕西林,周颖. 底部开水平缝预应力自复位剪力墙试验研究及数值模拟[J]. 地震工程与工程振动, 2014, 34(4):154-161.
  Dang Xiangliang, Lü Xilin, Zhou Ying. Experimental study and numerical simulation of self-centering shear walls with horizontal bottom slit[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(4):154-161.(in Chinese)
[12] 胡晓斌, 贺慧高, 彭真, 等. 往复荷载作用下自复位墙滞回性能研究[J]. 建筑结构学报, 2013, 34(11):18-23.
  Hu Xiaobin, He Huigao, Peng Zhen, et al. Study on hysteretic performance of self-centering wall subjected to cyclic loading[J]. Journal of Building Structures, 2013, 34(11): 18-23.(in Chinese)
[13] 马昕, 吕西林. 软钢阻尼器对自复位剪力墙性能影响研究[J]. 结构工程师, 2013, 29(4): 63-69. DOI:10.3969/j.issn.1005-0159.2013.04.011.
Ma Xin, Lü Xilin. Effects of the mild steel damper on the self-centering wall performance[J]. Structural Engineers, 2013, 29(4): 63-69. DOI:10.3969/j.issn.1005-0159.2013.04.011. (in Chinese)
[14] ElGawady M A, Ma Q, Butterworth J W, et al. Effects of interface material on the performance of free rocking blocks[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(4): 375-392. DOI:10.1002/eqe.1025.
[15] Yim C S, Chopra A K, Penzien J. Rocking response of rigid blocks to earthquakes[J]. Earthquake Engineering& Structural Dynamics, 1980, 8(6): 565-587. DOI:10.1002/eqe.4290080606.
[16] Yilmaz C, Gharib M, Hurmuzlu Y. Solving frictionless rocking block problem with multiple impacts[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465(2111): 3323-3339. DOI:10.1098/rspa.2009.0273.
[17] Prieto F, Lourenço P B, Oliveira C S. Impulsive Dirac-delta forces in the rocking motion[J]. Earthquake Engineering & Structural Dynamics, 2004, 33(7): 839-857. DOI:10.1002/eqe.381.

备注/Memo

备注/Memo:
收稿日期: 2016-12-06.
作者简介: 周臻(1981—),男,博士,教授,博士生导师,seuhj@163.com.
基金项目: 国家自然科学基金资助项目(51208095)、江苏省“青蓝工程”资助项目、江苏省六大人才高峰资助项目(JZ-002)、江苏省普通高校研究生实践创新计划资助项目(SJLX15_0033).
引用本文: 周臻,朱冬平,谢钦.矩形脉冲激励下自复位墙的摇摆响应[J].东南大学学报(自然科学版),2017,47(4):717-723. DOI:10.3969/j.issn.1001-0505.2017.04.015.
更新日期/Last Update: 2017-07-20