[1]马银行,陶楠,姜益军,等.悬臂闭孔泡沫铝板的非线性振动实验研究[J].东南大学学报(自然科学版),2017,47(4):732-737.[doi:10.3969/j.issn.1001-0505.2017.04.017]
 Ma Yinhang,Tao Nan,Jiang Yijun,et al.Experimental study on nonlinear vibration of cantilever closed-cell aluminum foam plates[J].Journal of Southeast University (Natural Science Edition),2017,47(4):732-737.[doi:10.3969/j.issn.1001-0505.2017.04.017]
点击复制

悬臂闭孔泡沫铝板的非线性振动实验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第4期
页码:
732-737
栏目:
材料科学与工程
出版日期:
2017-07-20

文章信息/Info

Title:
Experimental study on nonlinear vibration of cantilever closed-cell aluminum foam plates
作者:
马银行陶楠姜益军杨福俊何小元
东南大学江苏省工程力学重点实验室, 南京 210096
Author(s):
Ma Yinhang Tao Nan Jiang Yijun Yang Fujun He Xiaoyuan
Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 210096, China
关键词:
悬臂闭孔泡沫铝板 非线性振动 模态形状 电子散斑干涉
Keywords:
cantilever closed-cell aluminum foam plate nonlinear vibration mode shape electronic speckle pattern interferometry
分类号:
TG113
DOI:
10.3969/j.issn.1001-0505.2017.04.017
摘要:
为了研究闭孔泡沫铝板的非线性振动特性,首先采用电子散斑干涉技术对3个孔隙率相同的悬臂闭孔泡沫铝板共振模态进行了测量,获得了前14阶离面共振激励频率和相应的模态振型,并基于欧拉-伯努利梁模型及1阶弯振频率测量值计算得到闭孔泡沫铝的动态弹性模量.然后对相同孔隙率的闭孔泡沫铝静态单轴压缩力学行为进行了实验研究,测得了其静态压缩弹性模量.实验结果表明:由于闭孔泡沫铝存在大量不规则孔洞结构,导致其振动响应具有明显的非线性, 表现为同一振动模态对应于数个谐振激励频率,是典型的超谐振.另外,基于振动分析得到的泡沫铝动态弹性模量是静态压缩弹性模量值的2倍多,这与泡沫铝是拉压双弹性模量材料有关.
Abstract:
In order to analyze the nonlinear vibration behaviour of the aluminum foam plate, first 14 order flexural vibrating mode shapes and driving frequencies of three cantilever closed-cell aluminum foam specimens with the same porosity under harmonic excitation were measured by the the electronic speckle pattern interferometry(ESPI). The dynamic Young’s modulus of closed-cell aluminum foam is obtained based on the Euler-Bernoulli beam model and the measured frequency value of the first order resonant mode. Meanwhile, the mechanical behavior of closed-cell aluminum foams under quasi-static uniaxial compression was investigated experimentally and the static Young’s modulus was obtained accordingly. Experimental results show that the dynamic response of forced vibration of aluminum foam is nonlinear due to its cellular structure. One resonant mode shape corresponds to several driving frequencies, which is a typical characteristic of super-harmonic vibration. The dynamic Young’s modulus of the closed-cell aluminum foam is greater than two times of its static Young’s modulus, which is related to the fact that the aluminum foam is a type of bi-modulus material with different elastic moduli in tension and compression.

参考文献/References:

[1] Banhart J. Manufacture, characterisation and application of cellular metals and metal foams[J]. Progress in Materials Science, 2001, 46(6): 559-632. DOI:10.1016/s0079-6425(00)00002-5.
[2] Jang W Y, Kyriakides S. On the crushing of aluminum open-cell foams: Part Ⅰ. Experiments[J]. International Journal of Solids and Structures, 2009, 46(3): 617-634. DOI:10.1016/j.ijsolstr.2008.09.008.
[3] Konstantinidis I C, Papadopoulos D P, Lefakis H, et al. Model for determining mechanical properties of aluminum closed-cell foams[J]. Theoretical and Applied Fracture Mechanics, 2005, 43(2): 157-167. DOI:10.1016/j.tafmec.2005.01.001.
[4] Song H W, He Q J, Xie J J,et al. Fracture mechanisms and size effects of brittle metallic foams: In situ compression tests inside SEM[J]. Composites Science and Technology, 2008, 68(12): 2441-2450. DOI:10.1016/j.compscitech.2008.04.023.
[5] Mukai T, Kanahashi H, Miyoshi T, et al. Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading[J]. Scripta Materialia, 1999, 40(8): 921-927.
[6] Styles M, Compston P, Kalyanasundaram S. The effect of core thickness on the flexural behavior of aluminium foam sandwich structures[J]. Composite Structures, 2007, 80(4): 532-538. DOI:10.1016/j.compstruct.2006.07.002.
[7] 杨福俊, 王辉, 杜晓磊,等. 泡沫铝夹心板静态三点弯曲变形行为及力学性能[J]. 东南大学学报(自然科学版), 2012, 42(1): 120-124.
  Yang Fujun, Wang Hui, Du Xiaolei, et al. Deformation behavior and mechanical properties of aluminum foam sandwiches under static three-point bending[J]. Journal of Southeast University(Natural Science Edition), 2012, 42(1): 120-124.(in Chinese)
[8] Zhou Z, Wang Z, Zhao L, et al. Uniaxial and biaxial failure behaviors of aluminium alloy foams[J]. Composites Part B: Engineering, 2014, 61: 340-349. DOI:10.1016/j.compositesb.2013.01.004.
[9] Teko(~overg)lu C, Gibson L J, Pardoen T, et al. Size effects in foams: Experiments and modeling[J]. Progress in Materials Science, 2011, 56(2): 109-138. DOI:10.1016/j.pmatsci.2010.06.001.
[10] Hou W H, Zhu F, Lu G X, et al. Ballistic impact experiments of metallic sandwich panels with aluminium foam core[J]. International Journal of Impact Engineering, 2010, 37(10): 1045-1055.DOI:10.1016/j.ijimpeng.2010.03.006.
[11] Banhart J, Baumeister J, Weber M. Damping properties of aluminium foams[J]. Materials Science and Engineering: A, 1996, 205(1): 221-228. DOI:10.1016/0921-5093(95)09973-5.
[12] 王海滨. 泡沫锌铝合金及其复合材料的制备与机械阻尼性能的研究[D]. 西安:西安理工大学材料科学与工程学院,2007.
[13] 黎花, 高岩. 泡沫金属材料阻尼性能的研究进展[J]. 材料导报, 2016, 30(1): 88-95.
  Li Hua, Gao Yan. Research progress of the damping property of metal foams[J]. Materials Review, 2016, 30(1): 88-95.(in Chinese)
[14] Huang C H. Experimental measurements by an optical method of resonant frequencies and mode shapes for square plates with rounded corners and chamfers[J]. Journal of Sound and Vibration, 2002, 253(3): 571-583. DOI:10.1006/jsvi.2001.3982.
[15] 强斌, 刘宇杰, 阚前华,等. 拉压弹性模量差异对泡沫铝夹芯板三点弯曲模拟的影响[J]. 功能材料,2013, 44(18): 2701-2705.
  Qiang Bin, Liu Yujie, Kan Qianhua, et al. Influence of the different moduli in tension and compression on three-point bending of aluminum foam sandwich panels[J]. Journal of Functional Materials, 2013, 44(18): 2701-2705.(in Chinese)
[16] 陈予恕. 非线性振动[M]. 北京:高等教育出版社, 2002: 12.

相似文献/References:

[1]高亹,张新江,张勇.非线性转子动力学问题研究综述[J].东南大学学报(自然科学版),2002,32(3):443.[doi:10.3969/j.issn.1001-0505.2002.03.029]
 Gao Wei,Zhang Xinjiang,Zhang Yong.Review of nonlinear rotor-dynamics[J].Journal of Southeast University (Natural Science Edition),2002,32(4):443.[doi:10.3969/j.issn.1001-0505.2002.03.029]

备注/Memo

备注/Memo:
收稿日期: 2016-12-19.
作者简介: 马银行(1993—),男, 硕士生; 杨福俊(联系人),男, 博士, 教授, 博士生导师, yang-fj@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(11272090, 11472081, 11532005).
引用本文: 马银行,陶楠,姜益军,等.悬臂闭孔泡沫铝板的非线性振动实验研究[J].东南大学学报(自然科学版),2017,47(4):732-737. DOI:10.3969/j.issn.1001-0505.2017.04.017.
更新日期/Last Update: 2017-07-20