[1]邓涵文,钱吮智.自愈合行为对水泥基复合材料力学性能恢复的影响[J].东南大学学报(自然科学版),2017,47(4):785-792.[doi:10.3969/j.issn.1001-0505.2017.04.024]
 Deng Hanwen,Qian Shunzhi.Effect of self-healing behavior on recovery of mechanical properties of engineered cementitious composites[J].Journal of Southeast University (Natural Science Edition),2017,47(4):785-792.[doi:10.3969/j.issn.1001-0505.2017.04.024]
点击复制

自愈合行为对水泥基复合材料力学性能恢复的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第4期
页码:
785-792
栏目:
交通运输工程
出版日期:
2017-07-20

文章信息/Info

Title:
Effect of self-healing behavior on recovery of mechanical properties of engineered cementitious composites
作者:
邓涵文1钱吮智12
1东南大学交通学院, 南京210096; 2南洋理工大学土木与环境工程学院, 新加坡639798
Author(s):
Deng Hanwen1 Qian Shunzhi12
1School of Transportation, Southeast University, Nanjing 210096, China
2School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
关键词:
工程水泥基复合材料 力学性能 自愈合 共振频率
Keywords:
engineered cementitious composite mechanical property self-healing resonance frequency
分类号:
U414
DOI:
10.3969/j.issn.1001-0505.2017.04.024
摘要:
为了研究自愈合行为对高掺量粉煤灰工程水泥基复合材料(ECC)力学性能恢复的影响,提出了一种利用共振频率表征混凝土材料内部健康/损坏状况的测量方法.通过共振频率测试、单轴拉伸实验和光学显微镜获取了ECC的共振频率、刚度、初始开裂强度、最大拉伸应变和裂缝形态.实验结果表明:经过15个干湿循环养护后,共振频率可恢复程度都可达到82%以上;预裂ECC的二次拉伸性能有着明显的恢复,重新出现了初始开裂阶段;刚度的恢复程度可达到58%以上,最大拉伸应变恢复程度在90%以上;自愈合作用可以使得一部分自愈合裂缝的开裂强度大于基质开裂强度.研究表明,利用高掺量粉煤灰材料制备高延性、高自愈合的ECC是可行的.
Abstract:
In order to study the effect of self-healing behavior on recovery of mechanical properties of engineered cementitious composites(ECC)with high-volume fly ash, a new method for measuring the health/damage condition of concrete materials with resonance frequency is proposed. The resonance frequency test, uniaxial tensile test and optical microscope are employed to study the resonance frequency, stiffness, first cracking strength, tensile strain and crack pattern of ECC. The experimental results show that the resonance frequency can be recovered to more than 82% after 15 curing cycles. The second tensile properties of the pre-cracked ECC were obviously recovered, and the initial cracking stage reemerged. The degree of stiffness recovery can reach more than 58%, and the maximum tensile strain recovery degree is above 90%. Self-healing behavior can make the cracking strength of a part of self-healing crack more than that of the matrix. Therefore, it is feasible to produce ECC materials with high-volume fly ash, while maintaining higher material ductility and self-healing behavior simultaneously.

参考文献/References:

[1] Lepech M D, Li V C. Water permeability of engineered cementitious composites[J]. Cement and Concrete Composites, 2009, 31(10): 744-753. DOI:10.1016/j.cemconcomp.2009.07.002.
[2] Yang Y, Lepech M D, Yang E H, et al. Autogenous healing of engineered cementitious composites under wet-dry cycles[J]. Cement and Concrete Research, 2009, 39(5): 382-390. DOI:10.1016/j.cemconres.2009.01.013.
[3] 瘙塁ahmaran M, Keskin S B, Ozerkan G, et al. Self-healing of mechanically-loaded self consolidating concretes with high volumes of fly ash[J]. Cement and Concrete Composites, 2008, 30(10): 872-879. DOI:10.1016/j.cemconcomp.2008.07.001.
[4] Edvardsen C. Water permeability and autogenous healing of cracks in concrete[J]. ACI Materials Journal, 1999, 96(4): 448-454.
[5] Isaacs B, Lark R, Jefferson T, et al. Crack healing of cementitious materials using shrinkable polymer tendons[J].Structural Concrete, 2013, 14(2): 138-147. DOI:10.1002/suco.201200013.
[6] Snoeck D, Van Tittelboom K, Steuperaert S, et al. Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(1): 13-24. DOI:10.1177/1045389X12438623.
[7] Fan S, Li M. X-ray computed microtomography of three-dimensional microcracks and self-healing in engineered cementitious composites[J]. Smart Materials and Structures, 2014, 24(1): 015021. DOI:10.1088/0964-1726/24/1/015021.
[8] Kan L, Shi H, Qu G, et al. Self-healing processes and products of engineered cementitious composites materials[J]. Journal of Tongji University, 2011, 39(10):1517-1523.
[9] Kan L L, Shi H S, Sakulich A R, et al. Self-healing characterization of engineered cementitious composite materials[J]. ACI Materials Journal, 2010, 107(6): 617-624.
[10] Huang H L, Ye G. Self-healing of cracks in cement paste affected by additional Ca2+ ions in the healing agent[J].Journal of Intelligent Material Systems and Structures, 2015, 26(3): 309-320. DOI:10.1177/1045389x14525490.
[11] Reinhardt H W, Jooss M. Permeability and self-healing of cracked concrete as a function of temperature and crack width[J]. Cement and Concrete Research, 2003, 33(7): 981-985. DOI:10.1016/s0008-8846(02)01099-2.
[12] Sahmaran M, Li M, Li V C. Transport properties of engineered cementitious composites under chloride exposure[J]. ACI Materials Journal, 2011, 104(6):604-611.
[13] Wang K, Jansen D C, Shah S P, et al. Permeability study of cracked concrete[J]. Cement and Concrete Research, 1997, 27(3): 381-393. DOI:10.1016/s0008-8846(97)00031-8.
[14] American Concrete Institute. ACI Committee 318 Building code requirements for structural concrete and commentary[S]. ACI, 2008.
[15] Li V C, Leung C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264. DOI:10.1061/(asce)0733-9399(1992)118:11(2246).
[16] ASTM C215-08. Standard test method for fundamental transverse, longitudinal, and torsional resonant frequencies of concrete specimens[S]. Philadelphia,USA: American Society of Testing and Materials,2009.
[17] Japan Society of Civil Engineers. Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks[S]. Tokyo, Japan:Japan Society of Civil Engineers, 2008.

相似文献/References:

[1]江心怡,薛烽,赵阔.Mg-Al-RE系镁合金组织与性能[J].东南大学学报(自然科学版),2010,40(3):646.[doi:10.3969/j.issn.1001-0505.2010.03.040]
 Jiang Xinyi,Xue Feng,Zhao Kuo.Microstructures and mechanical properties of Mg-Al-RE alloys[J].Journal of Southeast University (Natural Science Edition),2010,40(4):646.[doi:10.3969/j.issn.1001-0505.2010.03.040]
[2]程洁,周啸,李俐军,等.冠脉支架的多功能体外力学性能测试装置及实验研究[J].东南大学学报(自然科学版),2010,40(2):341.[doi:10.3969/j.issn.1001-0505.2010.02.024]
 Cheng Jie,Zhou Xiao,Li Lijun,et al.In-vitro test apparatus and experimental study of mechanics properties of coronary stents[J].Journal of Southeast University (Natural Science Edition),2010,40(4):341.[doi:10.3969/j.issn.1001-0505.2010.02.024]
[3]吴晓婧,薛烽,周健,等.Cu,Ni对Sn-Zn-Al无铅焊料组织和性能的影响[J].东南大学学报(自然科学版),2009,39(3):623.[doi:10.3969/j.issn.1001-0505.2009.03.038]
 Wu Xiaojing,Xue Feng,Zhou Jian,et al.Effect of Cu and Ni on microstructure and properties of Sn-Zn-Al lead-free solders[J].Journal of Southeast University (Natural Science Edition),2009,39(4):623.[doi:10.3969/j.issn.1001-0505.2009.03.038]
[4]周健,王常亮,薛烽.Sn-Zn钎料Cu接头的界面反应及力学性能[J].东南大学学报(自然科学版),2009,39(3):615.[doi:10.3969/j.issn.1001-0505.2009.03.037]
 Zhou Jian,Wang Changliang,Xue Feng.Interfacial reaction and joint strength of Sn-Zn solder/Cu[J].Journal of Southeast University (Natural Science Edition),2009,39(4):615.[doi:10.3969/j.issn.1001-0505.2009.03.037]
[5]张秀芝,孙伟,张倩倩,等.混杂钢纤维增强超高性能水泥基材料力学性能分析[J].东南大学学报(自然科学版),2008,38(1):156.[doi:10.3969/j.issn.1001-0505.2008.01.030]
 Zhang Xiuzhi,Sun Wei,Zhang Qianqian,et al.Mechanical behaviors of hybrid steel fiber reinforced ultra-high performance cementitious composites[J].Journal of Southeast University (Natural Science Edition),2008,38(4):156.[doi:10.3969/j.issn.1001-0505.2008.01.030]
[6]付小琴,周健,孙扬善,等.Sn-8Zn-3Bi-P无铅钎料微观组织及性能[J].东南大学学报(自然科学版),2006,36(5):831.[doi:10.3969/j.issn.1001-0505.2006.05.030]
 Fu Xiaoqin,Zhou Jian,Sun Yangshan,et al.Effect of phosphorus on microstructure and properties of Sn-8Zn-3Bi lead-free solder[J].Journal of Southeast University (Natural Science Edition),2006,36(4):831.[doi:10.3969/j.issn.1001-0505.2006.05.030]
[7]左晓宝,等.一种超弹性SMA复合阻尼器的设计与试验[J].东南大学学报(自然科学版),2004,34(4):459.[doi:10.3969/j.issn.1001-0505.2004.04.009]
 Zuo Xiaobao,Li Aiqun,et al.Design and experimental investigation of superelastic SMA damper[J].Journal of Southeast University (Natural Science Edition),2004,34(4):459.[doi:10.3969/j.issn.1001-0505.2004.04.009]
[8]魏宇,孙扬善,樊泉,等.TiC强化Cr12MoV基复合材料的组织和性能分析[J].东南大学学报(自然科学版),2003,33(4):463.[doi:10.3969/j.issn.1001-0505.2003.04.020]
 Wei Yu,Sun Yangshan,Fan Quan,et al.Microstructure and mechanical properties of TiC reinforced Cr12MoV composite[J].Journal of Southeast University (Natural Science Edition),2003,33(4):463.[doi:10.3969/j.issn.1001-0505.2003.04.020]
[9]闵学刚,孙扬善,杜温文,等.Ca,Si和RE对AZ91合金的组织和性能的影响[J].东南大学学报(自然科学版),2002,32(3):409.[doi:10.3969/j.issn.1001-0505.2002.03.022]
 Min Xuegang,Sun Yangshan,Du Wenwen,et al.Effects of Ca,Si and RE additions on the microstructures and mechanical properties of AZ91 based alloys[J].Journal of Southeast University (Natural Science Edition),2002,32(4):409.[doi:10.3969/j.issn.1001-0505.2002.03.022]
[10]杨春,蔡健,张学文,等.劲性钢管混凝土组合柱轴压性能试验研究[J].东南大学学报(自然科学版),2002,32(5):715.[doi:10.3969/j.issn.1001-0505.2002.05.008]
 Yang Chun,Cai Jian,Zhang Xuewen,et al.Experimental research on the composite column with cone of concrete filled steel tube under axial loads[J].Journal of Southeast University (Natural Science Edition),2002,32(4):715.[doi:10.3969/j.issn.1001-0505.2002.05.008]

备注/Memo

备注/Memo:
收稿日期: 2016-11-15.
作者简介: 邓涵文(1986—),男,博士生;钱吮智(联系人),男,博士,教授,博士生导师,sqian@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51278097)、江苏省六大人才高峰计划资助项目(2011-JZ-011).
引用本文: 邓涵文,钱吮智.自愈合行为对水泥基复合材料力学性能恢复的影响[J].东南大学学报(自然科学版),2017,47(4):785-792. DOI:10.3969/j.issn.1001-0505.2017.04.024.
更新日期/Last Update: 2017-07-20