[1]谢文霞,张军,徐成威,等.θ环填料塔中飞灰对TETA溶液吸收CO2性能的影响[J].东南大学学报(自然科学版),2017,47(4):818-824.[doi:10.3969/j.issn.1001-0505.2017.04.029]
 Xie Wenxia,Zhang Jun,Xu Chengwei,et al.Influence of fly ash on CO2 absorption using TETA solution in a θ-ring packed column[J].Journal of Southeast University (Natural Science Edition),2017,47(4):818-824.[doi:10.3969/j.issn.1001-0505.2017.04.029]
点击复制

θ环填料塔中飞灰对TETA溶液吸收CO2性能的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第4期
页码:
818-824
栏目:
能源与动力工程
出版日期:
2017-07-20

文章信息/Info

Title:
Influence of fly ash on CO2 absorption using TETA solution in a θ-ring packed column
作者:
谢文霞1张军1徐成威1涂春民2吕剑虹1钟辉1
1东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 2陕西清水川能源股份有限公司, 榆林 719404
Author(s):
Xie Wenxia1 Zhang Jun1 Xu Chengwei1 Tu Chunmin2 Lü Jianhong1 Zhong Hui1
1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
2Shaanxi Qingshuichuan Energy Co., Ltd., Yulin 719404, China
关键词:
三乙烯四胺(TETA) 飞灰 CO2捕集 填料塔 分布
Keywords:
triethylenetetramine(TETA) fly ash CO2 capture packed column distribution
分类号:
TK123
DOI:
10.3969/j.issn.1001-0505.2017.04.029
摘要:
为了解燃煤烟气中飞灰颗粒对三乙烯四胺(TETA)溶液吸收CO2性能的影响,采用液相加入飞灰的方式,在自行设计的乱堆不锈钢θ环填料塔内进行了实验研究.考察了飞灰在溶液温度、液气比、填料高度和飞灰浓度等操作条件下对TETA溶液吸收CO2的效率η和体积总传质系数KGaV的影响规律.结果表明:飞灰的存在降低了TETA溶液吸收CO2的效率η和体积总传质系数KGaV,且随着飞灰浓度的提高其影响呈增加趋势;随着溶液温度的增加,TETA溶液和TETA-飞灰溶液吸收CO2的效率η先升高后降低,KGaV则平稳升高;随着液气比的提高,ηKGaV均快速升高;随着填料高度的增加,ηKGaV升高,但KGaV的升高速率较快;随着溶液温度、液气比和填料高度的增加,飞灰对ηKGaV的影响逐渐减弱.
Abstract:
To understand the influence of fly ash in the flue gas generated from coal-fired power plants on the CO2 absorption performance using triethylenetetramine(TETA)as the absorbent, experiments were carried out by using a self-designed packed column filled with stainless steel θ-ring packing and introducing fly ash into the liquid phase. The effect laws of the process conditions, such as the solution temperature, the liquid-gas ratio, the packed height and the fly ash concentration on CO2 absorption efficiency η and the overall mass-transfer coefficient KGaV by using TETA solution were studied. The results show that the presence of fly ash in the TETA solution results in the decrease of CO2 absorption efficiency η and the overall mass-transfer coefficient KGaV, and the influence of fly ash on η and the KGaV becomes more significant with the increasing fly ash concentration. With the increase of the solution temperature, CO2 absorption efficiency η increases firstly and decreases subsequently using TETA solution and TETA with the fly ash solution, but the KGaV only shows a steady increasing tendency. With the increase of the liquid-gas ratio, CO2 absorption efficiency η and the KGaV of these two solutions increase rapidly. With the increase of the packed height, CO2 absorption efficiency η and KGaV also increase correspondingly, but KGaV increases faster. The decrease amplitude of η and the KGaV caused by fly ash becomes smaller with the increase of the solution temperature, the packing height and the liquid-gas ratio.

参考文献/References:

[1] Liu K K, Leigh W, Feron P, et al. Systematic study of aqueous monoethanolamine(MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements [J]. Applied Energy, 2016, 165: 648-659. DOI:10.1016/j.apenergy.2015.12.109.
[2] Pires J C M, Martins F G, Alvim-Ferraz M C M, et al. Recent developments on carbon capture and storage: An overview[J]. Chemical Engineering Research and Design, 2011, 89(9): 1446-1460. DOI:10.1016/j.cherd.2011.01.028.
[3] Liang Z W, Fu K Y, Idem R, et al. Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents [J]. Chinese Journal of Chemical Engineering, 2016, 24(2): 278-288.
[4] Han J H, Ahn Y C, Lee I B. A multi-objective optimization model for sustainable electricity generation and C2 mitigation(EGCM)infrastructure design considering economic profit and financial risk [J]. Applied Energy, 2012, 95: 186-195. DOI:10.1016/j.apenergy.2012.02.032.
[5] Pan M, Aziz F, Li B H, et al. Application of optimal design methodologies in retrofitting natural gas combined cycle power plants with CO2 capture[J]. Applied Energy, 2016, 161: 695-706. DOI:10.1016/j.apenergy.2015.03.035.
[6] Olajire A A. CO2 capture and separation technologies for end-of-pipe applications—A review [J]. Energy, 2010, 35(6): 2610-2628. DOI:10.1016/j.energy.2010.02.030.
[7] Chowdhury F A, Yamada H, Higashii T, et al. CO2 capture by tertiary amine absorbents: A performancecomparison study [J]. Industrial & Engineering Chemistry Research, 2013, 52(24): 8323-8331. DOI:10.1021/ie400825u.
[8] Schäffer A, Brechtel K, Scheffknecht G. Comparative study on differently concentrated aqueous solutions of MEA and TETA for CO2 capture from flue gases[J]. Fuel, 2012, 101: 148-153. DOI:10.1016/j.fuel.2011.06.037.
[9] Kim Y E, Moon S J, Yoon Y I, et al. Heat of absorption and absorption capacity of CO2 in aqueous solutions of amine containing multiple amino groups [J]. Separation and Purification Technology, 2014, 122: 112-118. DOI:10.1016/j.seppur.2013.10.030.
[10] Wang Z, Fang M X, Pan Y L, et al. Comparison and selection of amine-based absorbents in membrane vacuum regeneration process for CO2 capture with low energy cost [J]. Energy Procedia, 2013, 37: 1085-1092. DOI:10.1016/j.egypro.2013.05.205.
[11] Huang Q Z, Thompson J, Bhatnagar S, et al. Impact of flue gas contaminants on monoethanolamine thermal degradation[J]. Industrial & Engineering Chemistry Research, 2014, 53(2): 553-563.
[12] 杨津,徐莉,张爱红,等.杂质对MDEA-TETA溶液吸收与解吸CO2性能的影响[J].化学工程师,2011,25(8):56-59. DOI:10.3969/j.issn.1002-1124.2011.08.019.
Yang Jin, Xu Li, Zhang Aihong,et al. Influence of impurities on carbon dioxide absorption and desorption from aqueous MDEA-TETA [J]. Chemical Engineer, 2011, 25(8): 56-59. DOI:10.3969/j.issn.1002-1124.2011.08.019. (in Chinese)
[13] 张小刚,张安琪,李爽佩,等.烟气CO2捕集系统有机胺液变质分析及对策[J].西北大学学报(自然科学版),2015,45(1):68-72. DOI:10.16152/j.cnki.xdxbzr.2015-01-015.
Zhang Xiaogang, Zhang Anqi, Li Shuangpei, et al. Analysis and countermeasures on deterioration of amine in CO2 removal system from flue gas[J]. Journal of Northwest University(Natural Science Edition), 2015, 45(1): 68-72. DOI:10.16152/j.cnki.xdxbzr.2015-01-015. (in Chinese)
[14] 张向涛,张小刚,李建玺,等.锅炉烟气CO2捕集系统腐蚀原因及其缓蚀剂的筛选试验[J].热力发电,2012,41(2):81-83,87. DOI:10.3969/j.issn.1002-3364.2012.02.081.
Zhang Xiangtao, Zhang Xiaogang, Li Jianxi, et al. Causes leading to corrosion in CO2-capturing system of flue gas from coal-fired boilers and screening test of inhibitors[J]. Thermal Power Generation, 2012, 41(2): 81-83,87. DOI:10.3969/j.issn.1002-3364.2012.02.081. (in Chinese)
[15] Chen Z S, Yates D, Neathery J K, et al. The effect of fly ash on fluid dynamics of CO2 scrubber in coal-fired power plant[J]. Chemical Engineering Research and Design, 2012, 90(3): 328-335. DOI:10.1016/j.cherd.2011.07.024.
[16] 张军,徐益谦.风化粉煤灰pH值变化特征[J].粉煤灰,2004,16(5):15-16. DOI:10.3969/j.issn.1007-046X.2004.05.006.
Zhang Jun, Xu Yiqian. The characteristic of weathered-fly ash pH value change[J]. Coal Ash China, 2004, 16(5): 15-16. DOI:10.3969/j.issn.1007-046X.2004.05.006. (in Chinese)
[17] 杨向平,陆诗建,高仲峰,等.基于电位法和酸碱度法的醇胺溶液吸收二氧化碳[J].中国石油大学学报(自然科学版),2010,34(2):140-144. DOI:10.3969/j.issn.1673-5005.2010.02.028.
Yang Xiangping, Lu Shijian, Gao Zhongfeng, et al. Amine solutions absorbing carbon dioxide based on methods of potentiometry and pH[J]. Journal of China University of Petroleum(Edition of Natural Science), 2010, 34(2): 140-144. DOI:10.3969/j.issn.1673-5005.2010.02.028. (in Chinese)
[18] Aroonwilas A, Tontiwachwuthikul P. Mass transfer coefficients and correlation for CO2 absorption into 2-amino-2-methyl-1-propanol(AMP)using structured packing [J]. Industrial & Engineering Chemistry Research, 1998, 37(2): 569-575. DOI:10.1021/ie970482w.
[19] Maneeintr K, Idem R O, Tontiwachwuthikul P, et al. Comparative mass transfer performance studies of CO2 absorption into aqueous solutions of DEAB and MEA[J]. Industrial & Engineering Chemistry Research, 2010, 49(6): 2857-2863. DOI:10.1021/ie900540v.
[20] Fu K Y, Sema T, Liang Z W, et al. Investigation of mass-transfer performance for CO2 absorption intodiethylenetriamine(DETA)in a randomly packed column [J]. Industrial & Engineering Chemistry Research, 2012, 51(37): 12058-12064. DOI:10.1021/ie300830h.
[21] 秦总根,涂伟萍.填料塔液体分布器的设计与选型[J].现代化工,2003,23(S1):221-224,227. DOI:10.3321/j.issn:0253-4320.2003.z1.066.
Qin Zonggen, Tu Weiping. Design and type selection of liquid distribution in filling layers of filling column[J]. Modern Chemical Industry, 2003, 23(S1): 221-224,227. DOI:10.3321/j.issn:0253-4320.2003.z1.066. (in Chinese)
[22] 张军,谢文霞,龚勋.θ环填料塔中灰颗粒对K2CO3溶液吸收CO2性能的影响[J].东南大学学报(自然科学版),2015,45(3):509-514. DOI:10.3969/j.issn.1001-0505.2015.03.017.
Zhang Jun, Xie Wenxia, Gong Xun. Influence of ash particles on CO2 absorption performance using potassium carbonate in a θ-ring packed tower [J]. Journal of Southeast University(Natural Science Edition), 2015, 45(3): 509-514. DOI:10.3969/j.issn.1001-0505.2015.03.017. (in Chinese)
[23] 朱春英,马友光,高习群,等.单乙醇胺水溶液化学吸收CO2的研究[J].化学工程,2009,37(5):1-4. DOI:10.3969/j.issn.1005-9954.2009.05.001.
Zhu Chunying, Ma Youguang, Gao Xiqun, et al. Chemical absorption of CO2 into monoethanolamine aqueous solution[J]. Chemical Engineering, 2009, 37(5): 1-4. DOI:10.3969/j.issn.1005-9954.2009.05.001. (in Chinese)

相似文献/References:

[1]杨立国,段钰锋,杨祥花,等.燃煤电厂汞排放特性实验研究[J].东南大学学报(自然科学版),2007,37(5):817.[doi:10.3969/j.issn.1001-0505.2007.05.016]
 Yang Liguo,Duan Yufeng,Yang Xianghua,et al.Mercury emission characteristics from coal-fired power plants[J].Journal of Southeast University (Natural Science Edition),2007,37(4):817.[doi:10.3969/j.issn.1001-0505.2007.05.016]
[2]曾小强,陈晓平,梁财,等.温度对污泥流化床焚烧飞灰重金属迁移的影响[J].东南大学学报(自然科学版),2015,45(1):97.[doi:10.3969/j.issn.1001-0505.2015.01.018]
 Zeng Xiaoqiang,Chen Xiaoping,Liang Cai,et al.Effect of temperature on migration of heavy metals in fly ash in a fluidized bed incinerator for sewage sludge[J].Journal of Southeast University (Natural Science Edition),2015,45(4):97.[doi:10.3969/j.issn.1001-0505.2015.01.018]

备注/Memo

备注/Memo:
收稿日期: 2016-12-09.
作者简介: 谢文霞(1987—),女,博士生;张军(联系人),男,博士,教授,博士生导师,junzhang@seu.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2013CB228504)、国家自然科学基金资助项目(51576043).
引用本文: 谢文霞,张军,徐成威,等.θ环填料塔中飞灰对TETA溶液吸收CO2性能的影响[J].东南大学学报(自然科学版),2017,47(4):818-824. DOI:10.3969/j.issn.1001-0505.2017.04.029.
更新日期/Last Update: 2017-07-20