[1]许妍,刘莎,徐磊,等.典型多氯联苯在太湖底泥微环境中的脱氯降解[J].东南大学学报(自然科学版),2017,47(4):825-831.[doi:10.3969/j.issn.1001-0505.2017.04.030]
 Xu Yan,Liu Sha,Xu Lei,et al.Dechlorination of typical polychlorinated biphenyl congeners in Taihu Lake sediment microcosms[J].Journal of Southeast University (Natural Science Edition),2017,47(4):825-831.[doi:10.3969/j.issn.1001-0505.2017.04.030]
点击复制

典型多氯联苯在太湖底泥微环境中的脱氯降解()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第4期
页码:
825-831
栏目:
环境科学与工程
出版日期:
2017-07-20

文章信息/Info

Title:
Dechlorination of typical polychlorinated biphenyl congeners in Taihu Lake sediment microcosms
作者:
许妍1刘莎1徐磊1陈曦12周亚子1秦庆东1
1东南大学土木工程学院, 南京 210096; 2中国电建集团华东勘测设计研究院有限公司, 杭州 310014
Author(s):
Xu Yan1 Liu Sha1 Xu Lei1 Chen Xi12 Zhou Yazi1 Qin Qingdong1
1School of Civil Engineering, Southeast University, Nanjing 210096, China
2Power China Huadong Engineering Corporation Limited, Hangzhou 310014, China
关键词:
太湖 多氯联苯 底泥 微生物脱氯
Keywords:
Taihu Lake polychlorinated biphenyl sediment microbial dechlorination
分类号:
X835
DOI:
10.3969/j.issn.1001-0505.2017.04.030
摘要:
以太湖底泥为介质构建反应微环境,考察了商业产品Aroclor系列中9种常见多氯联苯单体(二氯联苯PCB5和PCB12、四氯联苯PCB64和PCB71、类二噁英五氯联苯PCB105和PCB114、六氯联苯PCB149和PCB153、七氯联苯PCB170)在24周时间内的脱氯降解情况.结果显示:太湖底泥中的天然微生物具备降解多氯联苯的能力,9种添加的母体多氯联苯均出现不同程度的脱氯现象,泥浆中多氯联苯总浓度由(49.56±0.38)mg/kg降至(42.19±0.14)mg/kg;脱氯方式以对位脱氯和间位脱氯为主,检测到的主要脱氯产物包括PCB1,PCB2,PCB25,PCB32,PCB47,PCB49,PCB52,PCB66,PCB90,PCB99,PCB101和PCB102;在24周内,微环境体系总二噁英毒性当量(TEQs)从(297±2)pg/g降至(21±5)pg/g,降幅达92.9%,显示出良好的环境解毒效果.
Abstract:
Dechlorination of 9 commercially available polychlorinated biphenyl(PCB)congeners including PCB5, PCB12, PCB64, PCB71, PCB105, PCB114, PCB149, PCB153 and PCB170 was examined in Taihu Lake sediment microcosms in a time course of 24 weeks. The results show that native microorganisms in Taihu Lake sediments are capable of dechlorinating PCBs; the nine added cogeners exhibit different extent of dechlorination; total PCBs in slurry reduce from(49.56±0.38)mg/kg to(42.19±0.14)mg/kg; Para and meta removals are prevalent. The dominant observed dechlorination products include PCB1, PCB2, PCB25, PCB32, PCB47, PCB49, PCB52, PCB66, PCB90, PCB99, PCB101 and PCB102. After 24 weeks of incubation, the total TEQs reduce from(297±2)pg/g to(21±5)pg/g. Dechlorination leads to a reduction of TEQs by 92.9%, suggesting an apparent environmental detoxification.

参考文献/References:

[1] Brown J F Jr, Bedard D L, Brennan M J, et al. Polychlorinated biphenyl dechlorination in aquatic sediments[J].Science, 1987, 236(4802): 709-712. DOI:10.1126/science.236.4802.709.
[2] 许妍, 傅大放. 多氯联苯微生物厌氧脱氯研究进展[J]. 环境化学, 2014, 33(6): 908-914. DOI:10.7524/j.issn.0254-6108.2014.06.017.
Xu Yan, Fu Dafang. A review on microbial-catalyzed reductive dechlorination of polychlorinated biphenyls[J].Environmental Chemistry, 2014, 33(6): 908-914. DOI:10.7524/j.issn.0254-6108.2014.06.017. (in Chinese)
[3] Lyall K, Croen L A, Sjödin A, et al. Polychlorinated biphenyl and organochlorine pesticide concentrations in maternal mid-pregnancy serum samples: Association with autism spectrum disorder and intellectual disability[J]. Environmental Health Perspectives, 2017, 125(3): 474-480. DOI:10.1289/EHP277.
[4] Fu J M, Mai B X, Sheng G Y, et al. Persistent organic pollutants in environment of the Pearl River Delta, China: An overview[J]. Chemosphere, 2003, 52(9): 1411-1422. DOI:10.1016/s0045-6535(03)00477-6.
[5] Sowers K R, May H D. In situ treatment of PCBs by anaerobic microbial dechlorination in aquatic sediment: Are we there yet[J]. Current Opinion in Biotechnology, 2013, 24(3): 482-488. DOI:10.1016/j.copbio.2012.10.004.
[6] 周春宏, 柏仇勇, 胡冠九, 等. 江苏省典型饮用水源地多氯联苯污染特性调查[J]. 化工时刊, 2005, 19(3): 22-25. DOI:10.3969/j.issn.1002-154X.2005.03.011.
Zhou Chunhong, Bai Chouyong, Hu Guanjiu, et al. The investigation of PCBs in the source of drinking water in Jiangsu province[J]. Chemical Industry Times, 2005, 19(3): 22-25. DOI:10.3969/j.issn.1002-154X.2005.03.011. (in Chinese)
[7] Wang H, Wang C X, Wu W Z, et al. Persistent organic pollutants in water and surface sediments of Taihu Lake, China and risk assessment[J]. Chemosphere, 2003, 50(4): 557-562. DOI:10.1016/s0045-6535(02)00484-8.
[8] Xu Y, Wei S, Qin Q, et al. AhR-mediated activities and compounds in sediments of Meiliang Bay, Taihu Lake, China determined by in vitro bioassay and instrumental analysis[J]. RSC Advances, 2015, 5(69): 55746-55755. DOI:10.1039/c5ra08412a.
[9] 张跃军, 许添国, 刘程. 江苏省典型内河沉积物中多氯联苯残留情况[J]. 环境污染与防治, 2008, 30(6): 98-100. DOI:10.3969/j.issn.1001-3865.2008.06.029.
[10] 聂明华, 杨毅, 刘敏, 等. 太湖流域水源地悬浮颗粒物中的PAH、OCP和PCB[J]. 中国环境科学, 2011, 31(8): 1347-1354.
  Nie Minghua, Yang Yi, Liu Min, et al. PAH、OCP and PCB in suspended particular matters(SPMs)in drinking water reservoir from the Taihu Lake basin[J]. China Environmental Science, 2011, 31(8): 1347-1354.(in Chinese)
[11] Xu Y, Yu Y, Gregory K B, et al. Comprehensive assessment of bacterial communities and analysis of PCB congeners in PCB-contaminated sediment with depth[J]. Journal of Environmental Engineering—ASCE, 2012, 138(12): 1167-1178. DOI:10.1061/(asce)ee.1943-7870.0000595.
[12] 陈燕燕, 尹颖, 王晓蓉, 等. 太湖表层沉积物中PAHs和PCBs的分布及风险评价[J]. 中国环境科学,2009, 29(2): 118-124. DOI:10.3321/j.issn:1000-6923.2009.02.002.
Chen Yanyan, Yin Ying, Wang Xiaorong, et al. Polycyclic aromatic hydrocarbons and polychlorinated biphenyl in surface sediments of taihu lake: The distribution, sources and risk assessment[J]. China Environmental Science, 2009, 29(2): 118-124. DOI:10.3321/j.issn:1000-6923.2009.02.002. (in Chinese)
[13] Xu Y, Gregory K B, Vanbriesen J M. Microbial-catalyzed reductive dechlorination of polychlorinated biphenyls in Hudson and Grasse River sediment microcosms: Determination of dechlorination preferences and identification of rare ortho removal pathways[J]. Environmental Science & Technology, 2016, 50(23): 12767-12778. DOI:10.1021/acs.est.6b03892.
[14] Shelton D R, Tiedje J M. General method for determining anaerobic biodegradation potential [J]. Applied and Environmental Microbiology, 1984, 47(4): 850-857.
[15] Van den Berg M, Birnbaum L S, Bosveld A T C, et al. Toxic equivalency factors(TEFs)for PCBs, PCDDs, PCDFs for humans and wildlife[J]. Environmental Health Perspectives, 1998, 106(12): 775-792. DOI:10.1289/ehp.98106775.
[16] Van den Berg M, Birnbaum LS, Denison M, et al. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds[J]. Toxicological Sciences, 2006, 93(2): 223-241. DOI:10.1093/toxsci/kfl055.
[17] Zhang Q H, Jiang G B. Polychlorinated dibenzo-p-dioxins/furans and polychlorinated biphenyls in sediments and aquatic organisms from the Taihu Lake, China[J]. Chemosphere, 2005, 61(3): 314-322. DOI:10.1016/j.chemosphere.2005.02.099.
[18] Xu Y. Microbial-catalyzed reductive dechlorination of polychlorinated biphenyl(PCBs)in Hudson and Grasse River sediment—shifts of microorganisms, PCB tracker pairs and geochemical properties[D]. Pittsburgh: Carnegie Mellon University, 2011.

备注/Memo

备注/Memo:
收稿日期: 2017-01-21.
作者简介: 许妍(1980—),女,博士,副教授,xuxucalmm@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(41671468,41301546,51408119)、南京大学污染控制与资源化国家重点实验室开放基金资助项目(PCRRF16018).
引用本文: 许妍,刘莎,徐磊,等.典型多氯联苯在太湖底泥微环境中的脱氯降解[J].东南大学学报(自然科学版),2017,47(4):825-831. DOI:10.3969/j.issn.1001-0505.2017.04.030.
更新日期/Last Update: 2017-07-20