[1]邹高翔,童创明,孙华龙,等.复杂分区域复合粗糙面的布儒斯特效应[J].东南大学学报(自然科学版),2017,47(5):897-905.[doi:10.3969/j.issn.1001-0505.2017.05.010]
 Zou Gaoxiang,Tong Chuangming,Sun Hualong,et al.Brewster effect of complicated composite rough surface[J].Journal of Southeast University (Natural Science Edition),2017,47(5):897-905.[doi:10.3969/j.issn.1001-0505.2017.05.010]
点击复制

复杂分区域复合粗糙面的布儒斯特效应()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第5期
页码:
897-905
栏目:
电磁场与微波技术
出版日期:
2017-09-20

文章信息/Info

Title:
Brewster effect of complicated composite rough surface
作者:
邹高翔1童创明12孙华龙1彭鹏13王童1
1空军工程大学防空反导学院, 西安 710051; 2东南大学毫米波国家重点实验室, 南京 210096; 3西安电子科技大学物理与光电工程学院, 西安 710071
Author(s):
Zou Gaoxiang1 Tong Chuangming12 Sun Hualong1 Peng Peng13 Wang Tong1
1Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China
2State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
3School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
关键词:
分区域复合粗糙面 自适应迭代物理光学法 布儒斯特效应 介电常数 粗糙度
Keywords:
composite rough surface adaptive iterative physical optics Brewster effect dielectric constant roughness
分类号:
TN011
DOI:
10.3969/j.issn.1001-0505.2017.05.010
摘要:
为了研究复杂地表环境布儒斯特效应随环境参数的演变规律,通过分区域复合粗糙面建模方法,构建了多种复杂地表的粗糙面模型,并采用基于复杂分区域面元的自适应迭代物理光学法,研究了多种复杂分区域复合粗糙面的布儒斯特效应.结果表明,环境表面的介电常数和粗糙度是决定布儒斯特角位置的重要因素,不同介电常数所对应的布儒斯特角位置不同,均方根高度的增加会导致布儒斯特角的增大,而相关长度的增加会引起布儒斯特角的减小.在分区域复合粗糙面中,区域介电常数和区域粗糙度的改变均会引起布儒斯特角发生偏移的布儒斯特融合效应,且介电常数占优的区域粗糙度改变所引起的布儒斯特融合效应会更为显著.因此,对于复杂地表环境,在已知各区域表面介质常数与粗糙度的情况下,考虑布儒斯特融合效应即可确定该环境的布儒斯特角,为复杂环境下的超低空目标探测提供可靠的理论支撑.
Abstract:
To study the evolution rule of the Brewster effect with the parameters in complicated ground circumstance, the geometrical models of composite rough surfaces with diverse structures are established based on the composite rough surface modeling theory. And the Brewster effects of diverse composite rough surfaces are researched using an adaptive iterative physical optics based on facets of complicated composite rough surfaces. The results show that the dielectric constant and the roughness are significant factors which determine the position of the Brewster angle. The positions of the Brewter angles for different dielectric constants are distinct. The Brewster angle increases with the increase of the root mean square height while it decreases with the increase of the correlation length. Both the change of the regional dielectric constant and that of the regional roughness can lead to the deviation of the Brewster angle which is defined as the Brewster fusion effect, meanwhile the Brewster fusion effect is more remarkable induced by variance of roughness in rough surface region whose dielectric constant is dominant. Therefore, when the dielectric constant and the roughness of the complicated ground circumstance are known, the Brewster angle can be determined by considering the Brewster fusion effect, which can provide a reliable theoretical basis for the detection of super-low altitude targets in the complicated circumstances.

参考文献/References:

[1] Zilman G, Zapolski A, Marom M. On detectability of a ship’s kelvin wake in simulated SAR images of rough sea surface[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2):609-619. DOI:10.1109/tgrs.2014.2326519.
[2] Voronovich A G, Zavorotny V U. Full-polarization modeling of monostatic and bistatic radar scattering from a rough sea surface[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(3):1362-1371. DOI:10.1109/tap.2013.2295235.
[3] El-Bah S, Dusseaux R, Afifi S. Some statistical and spatial properties of signal scattering by 2-D slightly rough random surfaces[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(2):721-729. DOI:10.1109/tap.2015.2511803.
[4] Wei P B, Zhang M, Sun R Q, et al. Scattering studies for two-dimensional exponential correlation textured rough surfaces using small-slope approximation method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5364-5373. DOI:10.1109/TGRS.2013.2288278.
[5] Johnson J T, Burkholder R J, Toporkov J V, et al. A numerical study of the retrieval of sea surface height profiles from low grazing angle radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1641-1650. DOI:10.1109/tgrs.2008.2006833.
[6] 李昌泽, 童创明, 齐立辉, 等. 三类新型随机粗糙面模型的快速散射特性分析[J]. 电波科学学报, 2015, 30(6): 1093-1101. DOI:10.13443/j.cjors.2015012901.
Li Changze, Tong Chuangming, Qi Lihui, et al. Analysis on fast electromagnetic scattering characteristics for three novel randomly rough surface models[J]. Chinese Journal of Radio Science, 2015, 30(6): 1093-1101. DOI:10.13443/j.cjors.2015012901. (in Chinese)
[7] Sun H L, Tong C M, Zou G X. High efficiency iterative solver for modeling composite rough surface electromagnetic scattering[J]. Electromagnetics, 2017, 37(2):113-126. DOI:10.1080/02726343.2017.1279113.
[8] 邹高翔, 童创明, 王童, 等. 地海交界分区域复合粗糙面建模及电磁散射特性研究[J]. 系统工程与电子技术, 2017, 39(7):43-56.
  Zou Gaoxiang, Tong Chuangming, Wang Tong, et al. Study on modeling and electromagnetic scattering characteristics of composite rough surface of ground and ocean in adjacent region[J]. Systems Engineering and Electronics, 2017, 39(7):43-56.(in Chinese)
[9] 邹高翔, 童创明, 孙华龙,等. 地海交界分区域复合粗糙面的布儒斯特效应研究[J]. 电波科学学报, 2016, 31(6):1036-1045.
  Zou Gaoxiang, Tong Chuangming, Sun Hualong, et al. Brewster effect from composite rough surface of ground and sea in adjacent region[J]. Chinese Journal of Radio Science, 2016, 31(6):1036-1045.(in Chinese)
[10] Saillard M, Maystre D. Scattering from metallic and dielectric rough surfaces[J]. Journal of the Optical Society of America A, 1990, 7(6):982-990. DOI:10.1364/josaa.7.000982.
[11] Baylard C, Maradudin A A, Greffet J J. Coherent reflection factor of a random rough surface: applications[J]. Journal of the Optical Society of America A, 1993, 10(12):2637-2647. DOI:10.1364/josaa.10.002637.
[12] Trizna D B. A model for Brewster angle damping and multipath effects on the microwave radar sea echo at low grazing angles[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5): 1232-1244. DOI:10.1109/36.628790.
[13] Thomson L I, Osinski G R, Pollard W H. Application of the Brewster angle to quantify the dielectric properties of ground ice formations[J]. Journal of Applied Geophysics, 2013, 99: 12-17. DOI:10.1016/j.jappgeo.2013.08.015.
[14] 隋栋训, 童创明, 彭鹏, 等. 超低空目标的广义布儒斯特效应[J]. 空军工程大学学报(自然科学版), 2015, 16(4): 29-32. DOI:10.3969/j.issn.1009-3516.2015.04.007.
Sui Dongxun, Tong Chuangming, Peng Peng, et al. A study of g brewster of super low altitude target[J]. Journal of Air Force Engineering University(Natural Science Edition), 2015, 16(4): 29-32. DOI:10.3969/j.issn.1009-3516.2015.04.007. (in Chinese)
[15] Ye H, Jin Y Q. Parameterization of the tapered incident wave for numerical simulation of electromagnetic scattering from rough surface[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(3):1234-1237. DOI: 10.1109/TAP.2004.842586
[16] Chin H, Yeom J H, Kim H T, et al. Improvement of iterative physical optics using previous information to guide initial guess[J]. Progress in Electromagnetics Research, 2012, 124: 473-486. DOI:10.2528/pier12011103.

备注/Memo

备注/Memo:
收稿日期: 2016-12-28.
作者简介: 邹高翔(1993—),男,博士生;童创明(联系人),男,博士,教授,博士生导师,cmtong156@126.com.
基金项目: 国家自然科学基金资助项目(61372033).
引用本文: 邹高翔,童创明,孙华龙,等.复杂分区域复合粗糙面的布儒斯特效应[J].东南大学学报(自然科学版),2017,47(5):897-905. DOI:10.3969/j.issn.1001-0505.2017.05.010.
更新日期/Last Update: 2017-09-20