[1]赵文超,张彪,许传龙,等.基于光场分层成像的火焰三维温度场测量[J].东南大学学报(自然科学版),2017,47(5):938-944.[doi:10.3969/j.issn.1001-0505.2017.05.016]
 Zhao Wenchao,Zhang Biao,Xu Chuanlong,et al.Measurement of 3D flame temperature field based on light field optical sectioning tomography[J].Journal of Southeast University (Natural Science Edition),2017,47(5):938-944.[doi:10.3969/j.issn.1001-0505.2017.05.016]
点击复制

基于光场分层成像的火焰三维温度场测量()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第5期
页码:
938-944
栏目:
能源与动力工程
出版日期:
2017-09-20

文章信息/Info

Title:
Measurement of 3D flame temperature field based on light field optical sectioning tomography
作者:
赵文超张彪许传龙王式民孙俊阳
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Zhao Wenchao Zhang Biao Xu Chuanlong Wang Shimin Sun Junyang
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
光场相机 光场重聚焦 点扩散函数 光学分层成像 温度场测量
Keywords:
light field camera light field refocus point spread function optical sectioning tomography temperature distribution measurement
分类号:
TK311
DOI:
10.3969/j.issn.1001-0505.2017.05.016
摘要:
为了实现瞬态火焰的三维温度场的测量,提出了一种基于光场分层成像技术的火焰温度场测量方法.利用光场相机通过一次曝光,将各个聚焦平面的信息储存在一张原始光场图像上,通过光场重聚焦技术获得了不同聚焦面的火焰图像序列,结合图像反演算法得到了高精度、实时性的火焰各断层图像,进而实现三维温度场分布的重建.建立了基于光场分层成像技术的火焰温度测量系统,实现对火焰三维空间上4个断层面的温度场重建.结果表明,重建的第1,4层的火焰面积较小,低温区域位置较低,第2,3层的火焰面积较大,低温区域位置较高;每层的火焰分布都是中部边缘处温度最高,且各层的火焰分布之间有明显差别.火焰重建实验结果符合燃烧火焰的外形结构和内部的温度分布结构,证明了此方法的可行性.
Abstract:
A light field optical section tomographic technique was proposed to measure the transient 3D flame temperature field. The information of each focal plane of the flame was simultaneously recorded on a light field image by a single exposure of a light field camera. Then, the flame image sequences of different focal planes were derived by the optical field refocusing technique. Combined with the image inversion algorithm, the high-precision, real-time images of each flame section were acquired, and then the three-dimensional temperature field distribution reconstruction was achieved. The measurement system and reconstruction results of 4 sections of the flame in 3D space were presented. The results show that the image areas of the first and the fourth sections are smaller and the low temperature region is lower; the image areas of the second and the third sections are larger, and the low temperature region is higher; the temperature of the middle edge of each section is the highest, and there is a significant difference between the temperature distributions of each section. The reconstructed results are in agreement with the temperature distribution and the contour structure of the combustion flame.

参考文献/References:

[1] 周怀春. 炉内火焰可视化检测原理与技术[M]. 北京: 科学出版社, 2005: 1-7.
[2] Hossain M M, Lu G, Sun D, et al. Three-dimensional reconstruction of flame temperature and emissivity distribution using optical tomographic and two-colour pyrometric techniques[J]. Measurement Science and Technology, 2013, 24(7): 074010. DOI:10.1088/0957-0233/24/7/074010.
[3] 是度芳, 钟志有, 王荣, 等. 相移全息CT技术测量双烛火焰温度场[J]. 光学学报, 1996, 16(6): 768-771.
  Shi Dufang, Zhong Zhiyou,Wang Rong, et al. Measurement of two-candle flame temperature field by phase-shifting holographic CT technique[J]. Acta Optica Sinica, 1996, 16(6): 768-771.(in Chinese)
[4] Bar-Ziv E, Sgulim S, Kafri O, et al. Temperature mapping in flames by moire deflectometry[J]. Applied optics, 1983, 22(5): 698-705. DOI:10.1364/ao.22.000698.
[5] Brisley P M, Lu G, Yan Y, et al. Three-dimensional temperature measurement of combustion flames using a single monochromatic CCD camera[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(4): 1417-1421. DOI:10.1109/tim.2005.851074.
[6] 陆永刚, 王式民, 朱震, 等. 调焦辐射层析成像法重建三维发光体辐射场[J]. 光学学报, 2000, 20(4): 570-572. DOI:10.3321/j.issn:0253-2239.2000.04.026.
Lu Yonggang, Wang Shimin,Zhu Zhen, et al. Irradiance reconstruction for 3-dimensional luminous body by means of the focusing emission computed tomography[J]. Acta Optica Sinica, 2000, 20(4):570-572. DOI:10.3321/j.issn:0253-2239.2000.04.026. (in Chinese)
[7] Sarder P, Nehorai A. Deconvolution methods for 3-D fluorescence microscopy images[J]. IEEE Signal Processing Magazine, 2006, 23(3): 32-45. DOI:10.1109/msp.2006.1628876.
[8] Sun J, Xu C, Zhang B, et al. Three-dimensional temperature field measurement of flame using a single light field camera[J]. Optics Express, 2016, 24(2): 1118-1132. DOI:10.1364/oe.24.001118.
[9] Ng R. Digital light field photography[D]. Stanford, CA, USA: Stanford University, 2006.
[10] Bishop T E, Favaro P. The light field camera: Extended depth of field, aliasing, and superresolution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(5): 972-986. DOI:10.1109/TPAMI.2011.168.
[11] 邹谋炎. 反卷积和信号复原[M]. 北京: 国防工业出版社, 2001: 30-45.
[12] 杨利红, 赵变红, 张星祥, 等. 点扩散函数高斯拟合估计与遥感图像恢复[J]. 中国光学, 2012, 5(2): 181-188. DOI:10.3969/j.issn.2095-1531.2012.02.014.
Yang Lihong, Zhao Bianhong, Zhang Xingxiang, et al. Gaussian fitted estimation of point spread function and remote sensing image restoration[J].Chinese Optics, 2012, 5(2): 181-188. DOI:10.3969/j.issn.2095-1531.2012.02.014. (in Chinese)
[13] Gonzalez R C, Woods R E. 数字图像处理 [M]. 2版. 阮秋琦,等译.北京: 电子工业出版社, 2003: 467-474.
[14] 田涛, 邓兵, 潘俊民. 基于景物散焦图像的距离测量[J]. 计算机研究与发展, 2001, 38(2):176-180.
  Tian Tao, Deng Bing, Pan Junmin. Depth measurement based on defocus image[J]. Journal of Computer Research & Development, 2001, 38(2): 176-180.(in Chinese)
[15] 李奇, 冯华君, 徐之海,等. 数字图象清晰度评价函数研究[J]. 光子学报, 2002, 31(6):736-738.
  Li Qi, Feng Huajun, Xu Zhihai, et al. Digital image sharpness evaluation function[J]. Acta Photonica Sinica, 2002, 31(6):736-738.(in Chinese)
[16] Choi T. IKONOS satellite on orbit modulation transfer function(MTF)measurement using edge and pulse method[D]. Brookings,USA: South Dakota State University, 2002.
[17] Cannon M. Blind deconvolution of spatially invariant image blurs with phase[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 2003, 24(1): 58-63. DOI:10.1109/tassp.1976.1162770.2.
[18] Lu Y G, Wang S M. 3-dimensional irradiance imaging with a single camera system[J]. Journal of Southeast University(English Edition), 1998, 14(2):40-44.
[19] 欧阳奇, 陈登福, 温良英. 基于机器视觉的发光体断面温度辐射测量方法[J]. 过程工程学报, 2008, 8(z1): 260-265. DOI:10.3321/j.issn:1009-606X.2008.z1.056.
Ou Yangqi, Chen Dengfu, Wen Liangying. Radiation temperature measurement method for luminous body section based on machine vision[J].The Chinese Journal of Process Engineering, 2008, 8(z1): 260-265. DOI:10.3321/j.issn:1009-606X.2008.z1.056. (in Chinese)
[20] 周怀春, 韩曙东, 郑楚光. 两种辐射温度图象监测方法的模拟比较分析及其适用性评价[J]. 中国电机工程学报, 2002, 22(6): 109-114. DOI:10.3321/j.issn:0258-8013.2002.06.024.
Zhou Huaichun, Han Shudong, Zheng Chuguang. Comparative study on two radiative temperature image[J]. Proceedings of the CSEE, 2002, 22(6):109-114. DOI:10.3321/j.issn:0258-8013.2002.06.024. (in Chinese)
[21] Zhou B, Zhang J, Wang S. Reconstruction of flame temperature field with optical sectioning method[J]. Image Processing Iet, 2011, 5(5):382-393.
[22] Xu C, Zhao W, Hu J, et al. Liquid lens-based optical sectioning tomography for three-dimensional flame temperature measurement[J]. Fuel, 2017, 196: 550-563. DOI:10.1016/j.fuel.2017.01.115.

备注/Memo

备注/Memo:
收稿日期: 2017-03-09.
作者简介: 赵文超(1993—),男,硕士生; 许传龙(联系人),男,博士,教授,博士生导师,chuanlongxu@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51506030, 51327803)、江苏省自然科学基金资助项目(BK20150622, BK20150023).
引用本文: 赵文超,张彪,许传龙,等.基于光场分层成像的火焰三维温度场测量[J].东南大学学报(自然科学版),2017,47(5):938-944. DOI:10.3969/j.issn.1001-0505.2017.05.016.
更新日期/Last Update: 2017-09-20