[1]禹法文,刘向东,张程宾.小型热虹吸管脉动流动传热特性的可视化实验研究[J].东南大学学报(自然科学版),2017,47(5):945-949.[doi:10.3969/j.issn.1001-0505.2017.05.017]
 Yu Fawen,Liu Xiangdong,Zhang Chengbin.Visualization experimental study on thermal performances of oscillation state in miniaturized two-phase thermosyphons[J].Journal of Southeast University (Natural Science Edition),2017,47(5):945-949.[doi:10.3969/j.issn.1001-0505.2017.05.017]
点击复制

小型热虹吸管脉动流动传热特性的可视化实验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第5期
页码:
945-949
栏目:
能源与动力工程
出版日期:
2017-09-20

文章信息/Info

Title:
Visualization experimental study on thermal performances of oscillation state in miniaturized two-phase thermosyphons
作者:
禹法文1刘向东2张程宾1
1东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 2扬州大学水利与能源动力工程学院, 扬州 225127
Author(s):
Yu Fawen1 Liu Xiangdong2 Zhang Chengbin 1
1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
2School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China
关键词:
热虹吸管 两相流动 传热 可视化
Keywords:
two-phase thermosyphon two-phase flow heat transfer visualization
分类号:
TK124
DOI:
10.3969/j.issn.1001-0505.2017.05.017
摘要:
采用高速显微成像系统对小型热虹吸管中气液两相流型演化进行了可视化实验研究,并对其脉动流动传热特性进行了分析讨论.研究结果表明,在两端压差和重力的耦合作用下,液塞的随机形成和沿槽道方向的脉动是脉动流动的典型特征.塞状流和环状流是小型热虹吸管脉动情况下的主要流型,液塞的脉动速度约为-1.5 ~1.5 m/s.对于脉动流工况,在启动过程中管壁导热和气液两相的膜态蒸发、膜态冷凝是小型热虹吸管的主要传热方式,该过程中热虹吸管的壁面温度持续升高,未出现温度波动;脉动启动后,小型热虹吸管内出现了液塞的随机形成和脉动运动交替冲刷壁面现象,此过程中小型热虹吸管主要靠对流蒸发、冷凝实现热量传递,且各段壁面温度皆表现出脉动特性.
Abstract:
The gas-liquid two-phase flow evolutions in a miniaturized two-phase thermosyphon were experimentally investigated by a high-speed microscopic visualization system. And the performances of oscillation flow and heat transfer in a miniaturized two-phase thermosyphon were analyzed. The results indicate that, the random formation and the oscillation of the liquid plugs are the typical features of the oscillation state under the coupling effects of the pressure difference and the gravity. The plug flow and the annular flow are the typical flow patterns of the miniaturized two-phase thermosyphon in oscillation state, and the oscillation velocity of the liquid plug is from -1.5 to 1.5 m/s. The heat transfer regimes are the film evaporation and the condensation combined with thermal conduction of the wall in the oscillation state at start-up stage of the miniaturized two-phase thermosyphon, in which the wall temperature rises continuously without fluctuation. After the start-up stage, accompanied with the random formation and oscillation of the liquid plugs, the temperature oscillations are observed at the wall temperatures of evaporator, adiabatic and condenser sections, and the heat transfer regime is the forced evaporation and the condensation in oscillation state.

参考文献/References:

[1] Faghri A. Heat pipes: Review, opportunities and challenges [J]. Frontiers in Heat Pipes, 2014, 5(1): 1-48. DOI: 10.5098/fhp.5.1.
[2] Franco A, Filippeschi S. Closed loop two-phase thermosyphon of small dimensions: A review of the experimental results [J]. Microgravity Science and Technology, 2012, 24(3): 165-179. DOI: 10.1007/s12217-011-9281-6.
[3] Hung Y M, Seng Q. Effects of geometric design on thermal performance of star-groove micro-heat pipes [J]. International Journal of Heat and Mass Transfer, 2011, 54(5): 1198-1209. DOI: 10.1016/j.ijheatmasstransfer.2010.09.070.
[4] Yang K S, Lin C C, Shyu J C, et al. Performance and two-phase flow pattern for micro flat heat pipes [J]. International Journal of Heat and Mass Transfer, 2014, 77: 1115-1123. DOI: 10.1016/j.ijheatmasstransfer.2014.06.056.
[5] Riffat S B, Zhao X, Doherty P S. Analytical and numerical simulation of the thermal performance of ‘mini’ gravitational and ‘micro’ gravitational heat pipes [J]. Applied Thermal Engineering, 2002, 22(9): 1047-1068. DOI: 10.1016/S1359-4311(02)00029-7.
[6] Moon S H, Hwang G, Ko S C, et al. Experimental study on the thermal performance of micro-heat pipe with cross-section of polygon [J]. Microelectronics Reliability, 2004, 44(2): 315-321. DOI: 10.1016/S0026-2714(03)00160-4.
[7] Cao Y, Gao M, Beam J E, et al. Experiments and analyses of flat miniature heat pipes [J]. Journal of Thermophysics and Heat Transfer, 1997, 11(2): 158-164. DOI: 10.2514/2.6247.
[8] Groll M, Rosler S. Operation principles and performance of heat pipes and closed two-phase thermosyphons [J]. Journal of Non-Equilibrium Thermodynamics, 1992, 17(2): 91-151. DOI: 10.1515/jnet.1992.17.2.91.
[9] Khodabandeh R, Furberg R. Instability, heat transfer and flow regime in a two-phase flow thermosyphon loop at different diameter evaporator channel [J]. Applied Thermal Engineering, 2010, 30(10): 1107-1114. DOI: 10.1016/j.applthermaleng.2010.01.024.
[10] Wong S C, Chen C W. Visualization experiments for groove-wicked flat-plate heat pipes with various working fluids and powder-groove evaporator [J]. International Journal of Heat and Mass Transfer, 2013, 66(6): 396-403. DOI: 10.1016/j.ijheatmasstransfer.2013.07.012.
[11] 柏立战, 林贵平, 张红星. 重力辅助环路热管稳态运行特性的实验研究 [J]. 航空学报, 2008, 29(5): 1112-1117. DOI: 10.3321/j.issn:1000-6893.2008.05.004.
Bai Lizhan, Lin Guiping, Zhang Hongxing. Experimental study on steady-state operating characteristics of gravity-assisted loop heat pipes [J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(5): 1112-1117. DOI:10.3321/j.issn:1000-6893.2008.05.004. (in Chinese)
[12] Chen Y, Yu F, Zhang C, et al. Experimental study on thermo-hydrodynamic behaviors in miniaturized two-phase thermosyphons [J]. International Journal of Heat and Mass Transfer, 2016, 100: 550-558. DOI: 10.1016/j.ijheatmasstransfer.2016.04.079.
[13] Churchill S W, Chu H H S. Correlating equations for laminar and turbulent free convection from a vertical plate [J]. International Journal of Heat and Mass Transfer, 1975, 18: 1323-1329. DOI: org/10.1016/0017-9310(75)90222-7.

相似文献/References:

[1]顾随安,王文琪.气—固两相文丘利流量计流动分析[J].东南大学学报(自然科学版),1984,14(1):64.[doi:10.3969/j.issn.1001-0505.1984.01.007]
 Gn Sui-an. and Wang Wen-qi.Discussions on The Measurement of Gas-Solid Flow By Means of Venturi meter[J].Journal of Southeast University (Natural Science Edition),1984,14(5):64.[doi:10.3969/j.issn.1001-0505.1984.01.007]

备注/Memo

备注/Memo:
收稿日期: 2017-04-08.
作者简介: 禹法文(1981—),男,博士生; 张程宾(联系人),男,博士,副教授, cbzhang@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51406175)、江苏省自然科学基金资助项目(BK20140488,BK20170082).
引用本文: 禹法文,刘向东,张程宾.小型热虹吸管脉动流动传热特性的可视化实验研究[J].东南大学学报(自然科学版),2017,47(5):945-949. DOI:10.3969/j.issn.1001-0505.2017.05.017.
更新日期/Last Update: 2017-09-20