[1]谈超群,董雨婕,傅大放.纳米铁酸钴活化过氧单硫酸盐系统去除水中磺胺类药物的研究[J].东南大学学报(自然科学版),2017,47(5):963-971.[doi:10.3969/j.issn.1001-0505.2017.05.020]
 Tan Chaoqun,Dong Yujie,Fu Dafang.Removal of sulfonamides in aqueous solution by nano-scaled CoFe2O4 activated peroxymonosulfate system[J].Journal of Southeast University (Natural Science Edition),2017,47(5):963-971.[doi:10.3969/j.issn.1001-0505.2017.05.020]
点击复制

纳米铁酸钴活化过氧单硫酸盐系统去除水中磺胺类药物的研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第5期
页码:
963-971
栏目:
环境科学与工程
出版日期:
2017-09-20

文章信息/Info

Title:
Removal of sulfonamides in aqueous solution by nano-scaled CoFe2O4 activated peroxymonosulfate system
作者:
谈超群董雨婕傅大放
东南大学土木工程学院, 南京 210096
Author(s):
Tan Chaoqun Dong Yujie Fu Dafang
School of Civil Engineering, Southeast University, Nanjing 210096, China
关键词:
纳米铁酸钴 磺胺类药物 过氧单硫酸氢钾 影响因素 淬灭实验
Keywords:
nano-scaled CoFe2O4 sulfonamides peroxymonosulfate influencing factors scavenging tests
分类号:
X131.2
DOI:
10.3969/j.issn.1001-0505.2017.05.020
摘要:
研究了磁性纳米铁酸钴/过氧单硫酸氢钾(CoFe2O4/PMS)系统降解典型磺胺类药物(SAs)的效果与机制,选取磺胺甲基嘧啶(SM1)及磺胺吡啶(SPY)为去除对象,考察各影响因素对药物去除效果的影响,并通过淬灭实验间接验证了系统中自由基的种类.结果表明: 磺胺类药物的降解过程符合拟一级动力学模型,提高CoFe2O4投量及PMS投量、降低药物初始浓度可增大反应速率;CoFe2O4/PMS系统降解SM1,SPY的最大拟一级动力学反应速率常数kobs值均发生在pH=9;催化剂循环3次后仍保持较高的催化性能,此时系统对SM1,SPY的去除率高达47.1%,62.4%;低浓度的HCO-3明显抑制了SM1的降解,但HCO-3的存在有利于SPY的降解,Cl-对2种药物的降解均有明显抑制作用;淬灭实验表明系统中可能同时存在·SO-4及·OH,且·SO-4对药物的去除起主要作用.研究表明纳米铁酸钴是一种催化性能优异、稳定性高、易于回收的催化材料.
Abstract:
To study the effects and the mechanism of CoFe2O4/PMS system on decomposing typical sulfonamides(SAs), sulfamerazine(SM1)and sulfapyridine(SPY)were selected as removal targets. The effects of influencing factors on the removal of SAs were evaluated and scavenging tests were performed to identify the radical species in the system. Results show that the degradation of SM1, as well as SPY, fitted the pseudo-first-order kinetics well(R2>0.95)in tests. Higher CoFe2O4 dosages, higher peroxymonosulfate(PMS)dosages and lower initial SAs concentrations favored the degradation of SAs. The maximum kobs of SM1 or SPY is obtained at pH=9.0. The catalyst maintains high performance after being recycled 3 times with the removal efficiency of 47.1% for SM1, 62.4% for SPY. Low HCO-3 concentration favored the degradation of SM1, but the existence of HCO-3 promotes SPY degradation. Cl- has obvious inhibition on the degradation of SM1 and SPY. According to scavenging test results, both ·SO-4 and ·OH may exist in the system, and ·SO-4 is the dominant radical. Nano-scaled CoFe2O4 is confirmed to be a recyclable calalyst with high catalytic performance and stability.

参考文献/References:

[1] Baran W, Adamek E, Ziemiańska J, et al. Effects of the presence of sulfonamides in the environment and their influence on human health[J]. Journal of Hazardous Materials, 2011, 196: 1-15. DOI: 10.1016/j.jhazmat.2011.08.082.
[2] Quinn B, Gagné F, Blaise C. Evaluation of the acute, chronic and teratogenic effects of a mixture of eleven pharmaceuticals on the cnidarian, hydra attenuata[J]. Science of the Total Environment, 2009, 407(3): 1072-1079. DOI: 10.1016/j.scitotenv.2008.10.022.
[3] Cui C, Jin L, jiang L, et al. Removal of trace level amounts of twelve sulfonamides from drinking water by UV-activated peroxymonosulfate[J]. Science of the Total Environment, 2016, 572: 244-251. DOI: 10.1016/j.scitotenv.2016.07.183.
[4] Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J]. Environmental Science & Technology, 2003, 37(20): 4790-4797. DOI: 10.1021/es0263792.
[5] Qi F, Chu W, Xu B. Modeling the heterogeneous peroxymonosulfate/Co-MCM41 process for the degradation of caffeine and the study of influence of cobalt sources[J]. Chemical Engineering Journal, 2014, 235: 10-18. DOI: 10.1016/j.cej.2013.08.113.
[6] Ji Y, Dong C, Kong D, et al. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: kinetics, reaction products and transformation mechanisms[J]. Journal of Hazardous Materials, 2015, 285: 491-500. DOI: 10.1016/j.jhazmat.2014.12.026.
[7] Burke V, Richter D, Greskowiak J, et al. Occurrence of antibiotics in surface and groundwater of a drinking water catchment area in Germany[J]. Water Environment Research, 2016, 88(7): 652-659. DOI: 10.2175/106143016X14609975746604.
[8] Tong L, Huang S, Wang Y, et al. Occurrence of antibiotics in the aquatic environment of Jianghan Plain, central China[J]. Science of the Total Environment, 2014, 497-498: 180-187. DOI: 10.1016/j.scitotenv.2014.07.068.
[9] 鲁映青,俞月萍.药理学[M].2版.上海:复旦大学出版社,2009:282-284.
[10] Su S, Guo W, Leng Y, et al. Heterogeneous activation of Oxone by Co(x)Fe(3-x)O4 nanocatalysts for degradation of rhodamine B[J]. Journal of Hazardous Materials, 2013, 244-245: 736-742. DOI: 10.1016/j.jhazmat.2012.11.005.
[11] 符荷花,陈猛,熊小京.Fenton氧化法对磺胺类抗生素的降解动力学[J].环境工程学报,2014,8(3):972-976.
  Fu Hehua, Chen Meng, Xiong Xiaojing. Kinetics of degradation of sulfonamides by Fenton process[J]. Chinese Journal of Environmental Engineering, 2014, 8(3): 972-976.(in Chinese)
[12] Tan C, Gao N, Deng Y, et al. Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate[J]. Journal of Hazardous Materials, 2014, 276: 452-460. DOI: 10.1016/j.jhazmat.2014.05.068.
[13] Fang G, Wu W, Liu C, et al. Activation of persulfate with vanadium species for PCBs degradation: A mechanistic study[J]. Applied Catalysis B: Environmental, 2017, 202: 1-11. DOI: 10.1016/j.apcatb.2016.09.006.
[14] Muhammad S, Shukla P R, Tadé M O, et al. Heterogeneous activation of peroxymonosulphate by supported ruthenium catalysts for phenol degradation in water[J]. Journal of Hazardous Materials, 2012, 215-216: 183-190. Doi:10.1016/j.jhazmat.2012.02.045.
[15] Liang C, Wang Z S, Bruell C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures[J]. Chemosphere, 2007, 66(1): 106-113. DOI: 10.1016/j.chemosphere.2006.05.026.
[16] Feng Y, Wu D, Deng Y, et al. Sulfate radical-mediated degradation of sulfadiazine by CuFeO2 rhombohedral crystal-catalyzed peroxymonosulfate: Synergistic effects and mechanisms[J]. Environ Sci Technol, 2016, 50(6): 3119-3127. DOI: 10.1021/acs.est.5b05974.
[17] 杨世迎,张君,韩强,等.HCO-3对Co2+催化HSO-5降解水中偶氮染料酸性橙7的影响[J].环境化学,2014,33(3):500-507. DOI: 10.7524/j.issn.0254-6108.2014.03.015.
Yang Shiying, Zhang Jun, Han Qiang, et al. Influence of HCO-3 on the degradation of azo dye acid orange 7 by Co2+/HSO-5 system[J]. Environmental Chemistry, 2014, 33(3): 500-507. DOI:10.7524/j.issn.0254-6108.2014.03.015. (in Chinese)
[18] Bennett D A, Yao H, Richardson D E. Mechanism of sulfide oxidations by peroxymonocarbonate[J]. Inorganic Chemistry, 2001, 40(13): 2996-3001. DOI: 10.1021/ic000910h.
[19] 何勇,陈瑛,卢丽娟,等.基于UV/H2O2和UV/PS系统降解水体中磺胺吡啶研究[J].应用化工,2016,45(5):815-819. DOI: 10.16581/j.cnki.issn1671-3206.20160201.008.
He Yong, Chen Ying, Lu Lijuan, et al. Degradation of sulfapyridine in aqueous solution by UV/H2O2 and UV/PS technology[J]. Applied Chemical Industry, 2016, 45(5): 815-819. DOI:10.16581/j.cnki.issn1671-3206.20160201.008. (in Chinese)
[20] Anipsitakis G P, Dionysiou D D, Gonzalez M A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions[J]. Environ Sci Technol, 2006, 40(3): 1000-1007. DOI: 10.1021/es050634b.
[21] Yuan R, Ramjaun S N, Wang Z, et al. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds[J]. Journal of Hazardous Materials, 2011, 196: 173-179. DOI: 10.1016/j.jhazmat.2011.09.007.
[22] Bennedsen L R, Muff J, Søgaard E G. Influence of chloride and carbonates on the reactivity of activated persulfate[J]. Chemosphere, 2012, 86(11): 1092-1097. DOI: 10.1016/j.chemosphere.2011.12.011.
[23] Xu L, Wang J. Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient fenton-like heterogeneous catalyst for degradation of 4-chlorophenol[J]. Environ Sci Technol, 2012, 46(18): 10145-10153. DOI: 10.1021/es300303f.
[24] Yao Y, Cai Y, Lu F, et al. Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants[J]. Journal of Hazardous Materials, 2014, 270: 61-70. DOI: 10.1016/j.jhazmat.2014.01.027.
[25] Ding Y, Zhu L, Wang N, et al. Sulfate radicals induced degradation of tetrabromobisphenol a with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate[J]. Applied Catalysis B: Environmental, 2013, 129: 153-162. DOI: 10.1016/j.apcatb.2012.09.015.
[26] Yang S, Wang P, Yang X, et al. A novel advanced oxidation process to degrade organic pollutants in wastewater:Microwave-activated persulfate oxidation[J]. Journal of Environmental Sciences, 2009, 21(9): 1175-1180. DOI: 10.1016/S1001-0742(08)62399-2.

备注/Memo

备注/Memo:
收稿日期: 2017-02-06.
作者简介: 谈超群(1989—),男,博士,讲师,tancq@seu.edu.cn.
基金项目: 国家自然科学基金青年科学基金资助项目(51608109)、江苏省自然科学基金青年科学基金资助项目(BK20160675)、同济大学污染控制与资源化研究国家重点实验室开放课题资助项目(PCRRF16015).
引用本文: 谈超群,董雨婕,傅大放.纳米铁酸钴活化过氧单硫酸盐系统去除水中磺胺类药物的研究[J].东南大学学报(自然科学版),2017,47(5):963-971. DOI:10.3969/j.issn.1001-0505.2017.05.020.
更新日期/Last Update: 2017-09-20