[1]邓琳,洪至彦,朱繁芳,等.三氯硝基甲烷在紫外/氯共同消毒过程中的生成与降解[J].东南大学学报(自然科学版),2017,47(5):972-978.[doi:10.3969/j.issn.1001-0505.2017.05.021]
 Deng Lin,Hong Zhiyan,Zhu Fanfang,et al.Formation and degradation of trichloronitromethane of combined UV/chlorine disinfection[J].Journal of Southeast University (Natural Science Edition),2017,47(5):972-978.[doi:10.3969/j.issn.1001-0505.2017.05.021]
点击复制

三氯硝基甲烷在紫外/氯共同消毒过程中的生成与降解()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第5期
页码:
972-978
栏目:
环境科学与工程
出版日期:
2017-09-20

文章信息/Info

Title:
Formation and degradation of trichloronitromethane of combined UV/chlorine disinfection
作者:
邓琳洪至彦朱繁芳刘贝贝夏英豪
东南大学土木工程学院, 南京 210096
Author(s):
Deng Lin Hong Zhiyan Zhu Fanfang Liu Beibei Xia Yinghao
School of Civil Engineering, Southeast University, Nanjing 210096, China
关键词:
三氯硝基甲烷 紫外/氯 消毒 生成与降解
Keywords:
trichloronitromethane UV(ultraviolet)/chlorine disinfection formation and degradation
分类号:
X502
DOI:
10.3969/j.issn.1001-0505.2017.05.021
摘要:
探讨了低压UV/氯共同消毒含聚二烯丙基二甲基氯化铵饮用水,对三氯硝基甲烷(TCNM)形成的影响.在低压汞灯照射条件下(λ=254 nm),考察了光照强度、自由氯浓度、·OH和pH以及聚二烯丙基二甲基氯化铵、二甲胺(DMA)和甲胺(MA)对TCNM形成和降解的影响,并研究了TCNM直接光降解,分析了其降解原因.实验结果表明:TCNM生成量随光照强度、自由氯浓度的增加而增加,随pH增加而降低;胺类物质分子结构越简单,越易生成TCNM;TCNM能直接光降解,但·OH在反应过程中不起主导作用.在这些实验条件下,UV/氯共同消毒可以改变含聚二烯丙基二甲基氯化铵水中的TCNM形成趋势,实验开始时间TCNM生成量显著增加,在5 min时其增幅超过了300%,然后TCNM的生成量显著减少,并且在30 min后几乎消失.该实验结论有助于形成新的TCNM控制策略,以减少TCNM在饮用水和污水处理过程中的产生.
Abstract:
This study’s objective was to investigate the effect of low pressure(LP)UV(Ultraviolet)treatment on the subsequent formation of trichloronitromethane(TCNM)in drinking water containing Poly diallyl dimethyl ammonium chloride. The effects of light intensity, free chloride concentration, ·OH, pH and Poly diallyl dimethyl ammonium chloride, dimethylamine(DMA)and methylamine(MA)on the formation and photodegradation of TCNM were investigated under the irradiation of the low pressure mercury lamp(λ=254 nm). And the direct photodegradation of TCNM under LP UV irradiation were studied for analyzing the formation and photodegradation reasons of TCNM. The results showed that the forming concentration of TCNM increased with the increase of light intensity and the free chloride concentration, and decreased with the increase of pH. Amine molecular structure was more simple and more easy to generate TCNM. TCNM could directly be photodegraded under LP UV irradiation, but ·OH did not play a leading role in the reaction process. LP UV disinfection of chlorinated water did change the tendency to form TCNM under the conditions of these tests. The evidence was found to have an obvious increase in the formation of TCNM in the first instance, furthermore the increase did exceed 300% after 5 min. Then, evidence was also found to have an obvious decrease in the formation of TCNM, and the concentration of TCNM did hardly disappear after 30 min. The mechanistic understanding from this study can help develop source control strategies for minimization of TCNM formation risk for water and wastewater utilities.

参考文献/References:

[1] Rook J J. Formation of haloforms during chlorination of natural water [J]. Water Treat Exam, 1974, 23(2):234-243.
[2] Richardson S D. Disinfection by-products and other emerging contaminants in drinking water [J]. Trends in Analytical Chemistry, 2003, 22(10):666-684. DOI:10.1016/s0165-9936(03)01003-3.
[3] Krasner S W, Weinberg H S, Richardson S D, et al. Occurrence of a new generation of disinfection byproducts [J]. Environmental Science & Technology, 2006, 40(23):7175-7185. DOI:10.1021/es060353j.
[4] Woo Y T, Lai D, McLain J L, et al. Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products [J]. Environmental Health Perspectives, 2002, 110(1):75-87. DOI:10.1289/ehp.02110s175.
[5] Richardson S D. Water analysis: Emerging contaminants and current issues [J]. Anal Chem, 2003, 75:2831-2857.
[6] Richardson S D, Jr Thruston A D, Caughran T V, et al. Identification of new drinking water disinfection by-products from ozone, chlorine dioxide, chloramine, and chlorine[J]. Water, Air, Soil Pollut, 2000, 123:95-102. DOI:10.1007/978-94-011-4369-1-9.
[7] Merlet N, Thibaud H, Dore M. Chloropicrin formation during oxidative treatments in the preparation of drinking water [J]. Sci Total Environ, 1985, 47:223-228. DOI:10.1016/0048-9697(85)90332-8.
[8] Thibaud H, de Laat J, Merlet N, et al. Chloropicrin formation in aqueous solution: Effect of nitrites on precursor’s formation during the oxidation of organic compounds [J]. Water Research, 1987, 21:813-821.
[9] Shah A D, Dotson A D, Linden K G, et al. Impact of UV disinfection combined with chlorination/chloramination on the formation of halonitromethanes and haloacetonitriles in drinking water [J]. Environmental Science & Technology, 2011,45(8): 3657-3664. DOI:10.1021/es104240v.
[10] Hoigne J, Bader H. The formation of trichloronitromethane(chloropicrin)and chloroform in a combined ozonation/chlorination treatment of drinking water [J]. Water Research, 1988, 22(3):313-319. DOI:10.1016/s0043-1354(88)90120-0.
[11] Yang X, Peng J F, Chen B Y, et al. Effects of ozone and ozone/peroxide pretreatments on disinfection byproduct formation during subsequent chlorination and chloramination [J]. Journal of Hazardous Materials, 2012, 15(239/240):348-354. DOI:10.1016/j.jhazmat.2012.09.006.
[12] Jacangelo J G, Patania N L, Reagan K M, et al. Ozonation: Assessing its role in the formation and control of disinfection by-products [J]. Journal of American Water Works Association, 1989, 81(8): 74-84.
[13] US Environmental Protection Agency. The occurrence of disinfection by-products(DPBs)of health concern in drinking water: Results of a nationwide occurrence study[R]. Athens, GA, USA: EPA National Exposure Research Laboratory, 2002.
[14] Dotson A D, Rodriguez C E, Linden K G. UV Disinfection implementation status in U.S. water treatment plants [J]. Journal of American Water Works Association, 2012, 104(5):318-324. DOI:10.5942/jawwa.2012.104.0075.
[15] Jin S, Mofidi A A, Linden K G. Polychromatic UV fluence measurement using chemical actinometry, biodosimetry, and mathematical techniques [J]. Journal of Environmental Engineering, 2006, 132(8):831-841. DOI:10.1061/(asce)0733-9372(2006)132:8(831).
[16] Reckhow D A, Linden K G, Kim J, et al. Effect of UV treatment on DBP formation [J]. Journal of American Water Works Association, 2010, 102(6):100-113.
[17] Fang J Y, Ling L, Shang C. Kinetics and mechanisms of pH-dependent degradation of halonitromethanes by UV photolysis [J]. Water Research, 2013, 47(3):1257-1266. DOI:10.1016/j.watres.2012.11.050.
[18] Environmental Protection Agency. METHOD#:330.4 chlorine, total residual(titrimetric, DPD-FAS)[S]. Washington: US Environmental Protection Agency, 1978.
[19] Park S H, Piyachaturawat P, Amelia E T, et al. Potential N-nitrosodimethylamine(NDMA)formation from amine-based water treatment polymers in the reactions with chlorine-based oxidants and nitrosifying agents [J]. Water Science & Technology: Water Supply, 2009, 9(3):279-288.
[20] Arnold W A, Roberts A L. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0)particles [J]. Environmental Science & Technology, 2000, 34(9):1794-1805. DOI:10.1021/es990884q.
[21] Cole S K. Halonitromethane treatment using advanced oxidation process: Rates, mechanisms and kinetic modeling [D]. Norfolk, Virginia, USA: Old Dominion University, 2005.

备注/Memo

备注/Memo:
收稿日期: 2016-11-08.
作者简介: 邓琳(1973—),男,博士,副教授,博士生导师,dlwhu@163.com.
基金项目: 国家自然科学基金资助项目(21677032)、江苏省自然科学基金资助项目(BK20151401).
引用本文: 邓琳,洪至彦,朱繁芳,等.三氯硝基甲烷在紫外/氯共同消毒过程中的生成与降解[J].东南大学学报(自然科学版),2017,47(5):972-978. DOI:10.3969/j.issn.1001-0505.2017.05.021.
更新日期/Last Update: 2017-09-20