[1]刘香香,张鑫,张政英,等.焙烧温度对TiO2纳米纤维的组成及其载铂催化剂对甲醇电化学氧化活性的影响[J].东南大学学报(自然科学版),2017,47(5):979-986.[doi:10.3969/j.issn.1001-0505.2017.05.022]
 Liu Xiangxiang,Zhang Xin,Zhang ZhengyingLou Yongbing,et al.Effects of calcination temperature on component of TiO2 nanofibers and Pt/TiO2 nanofiber catalysts for methanol electrooxidation[J].Journal of Southeast University (Natural Science Edition),2017,47(5):979-986.[doi:10.3969/j.issn.1001-0505.2017.05.022]
点击复制

焙烧温度对TiO2纳米纤维的组成及其载铂催化剂对甲醇电化学氧化活性的影响()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第5期
页码:
979-986
栏目:
化学化工
出版日期:
2017-09-20

文章信息/Info

Title:
Effects of calcination temperature on component of TiO2 nanofibers and Pt/TiO2 nanofiber catalysts for methanol electrooxidation
作者:
刘香香张鑫张政英娄永兵郑颖平孙岳明
东南大学化学化工学院, 南京 211189
Author(s):
Liu Xiangxiang Zhang Xin Zhang ZhengyingLou Yongbing Zheng Yingping Sun Yueming
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
关键词:
静电纺丝 二氧化钛纳米纤维 焙烧温度 甲醇 电化学氧化
Keywords:
electrospinning TiO2 nanofibers calcination temperature methanol electrocatalytic oxidation
分类号:
O646
DOI:
10.3969/j.issn.1001-0505.2017.05.022
摘要:
采用静电纺丝技术及随后的高温焙烧制备了不同晶相组成的TiO2纳米纤维(TiO2 NFs),再经浸渍还原将Pt纳米颗粒负载于其表面,得到Pt/TiO2纳米纤维催化剂(PT-x,x为焙烧温度).通过X射线衍射(XRD)、透射电镜(TEM)和X射线能量散射谱(EDS)等测试手段对样品的晶相、微结构和化学组成进行了表征.测试结果表明,随着焙烧温度的升高,TiO2纳米纤维中金红石相含量相应增大,550 ℃下焙烧获得的TiO2纳米纤维中金红石含量为2.67%.所制备的催化剂中,Pt负载量均大约为20%,Pt纳米颗粒均匀地分布于TiO2纳米纤维表面,其中PT-550所负载的Pt纳米颗粒最小.电化学测试结果表明,PT-550催化剂具有较好的催化甲醇氧化活性、抗CO中毒能力和稳定性.
Abstract:
TiO2 nanofibers with different crystal phases were prepared by electrospinning and calcination at different temperatures. Pt/TiO2 nanofiber electrocatalysts(PT-x, x was the calcination temperature)were achieved by loading Pt nanoparticles on the surface of TiO2 nanofibers using impregnation reduction method. The crystal phase, the microstructure and the chemical composition were investigated by X-ray diffraction(XRD), transmission electron microscope(TEM)and energy disperse spectroscopy(EDS). The test results show that the rutile content of TiO2 nanofibers increases with the increase of the calcination temperature. The rutile content of TiO2 nanofiber obtained at 550 ℃ is 2.67%. The Pt content is about 20% and Pt nanoparticles are uniformly distributed on the surface of TiO2 nanofibers. The size of Pt nanoparticles supported by PT-550 is the smallest among the catalysts. The electrocatalytic results show that, the PT-550 catalyst has better electrocatalytic oxidation activity, CO poisoning resistance ability and stability.

参考文献/References:

[1] Arico A S, Srinivasan S, Antonucci V. DMFCs: From fundamental aspects to technology development[J]. Fuel Cells, 2001, 1(2): 133-161. DOI:10.1002/1615-6854(200107)1:2<133::aid-fuce133>3.3.co;2-x.
[2] Formo E, Peng Z M, Lee E, et al. Direct oxidation of methanol on Pt nanostructures supported on electrospun nanofibers of anatase[J]. The Journal of Physical Chemistry C, 2008, 112(27): 9970-9975. DOI:10.1021/jp803763q.
[3] Yoo S J, Jeon T Y, Cho Y H, et al. Particle size effects of PtRu nanoparticles embedded in TiO2 on methanol electrooxidation[J]. Electrochimica Acta, 2010, 55(27): 7939-7944. DOI:10.1016/j.electacta.2010.03.049.
[4] Ito Y, Takeuchi T, Tsujiguchi T, et al. Ultrahigh methanol electro-oxidation activity of PtRu nanoparticles prepared on TiO2-embedded carbon nanofiber support[J]. Journal of Power Sources, 2013, 242(22): 280-288. DOI:10.1016/j.jpowsour.2013.10.001.
[5] You Y F, Xu C H, Xu S S, et al. Structural characterization and optical property of TiO2 powders prepared by the sol-gel method[J]. Ceramics International, 2014, 40(6): 8659-8666. DOI:10.1016/j.ceramint.2014.01.083.
[6] Zhang W W, Chen S G, Yu S Q, et al. Experimental and theoretical investigation of the pH effect on the titania phase transformation during the sol-gel process[J]. Journal of Crystal Growth, 2007, 308(1): 122-129. DOI:10.1016/j.jcrysgro.2007.07.053.
[7] Choi S K, Kim S, Lim S K, et al. Photocatalytic comparison of TiO2 nanoparticles and electrospun TiO2 nanofibers: Effects of mesoporosity and interparticle charge transfer[J]. The Journal of Physical Chemistry C, 2010, 114(39): 16475-16480. DOI:10.1021/jp104317x.
[8] 董宗木,苏桂琴,褚道葆,等.铂微粒修饰纳米二氧化钛电极对甲醇催化氧化的研究[J].安徽师范大学学报(自然科学版),2003,26(4): 364-366.
  Dong Zongmu, Su Guiqin, Chu Daobao, et al. Investigation on electrocatalytic oxidation of methanol on Ti/NANO-TiO2-Pt film electrode modified by platinum micropticles[J]. Anhui Normal University(Natural Science Edition), 2003, 26(4): 364-366.(in Chinese)
[9] Erdogan N, Ozturk A, Park J. Hydrothermal synthesis of 3D TiO2 nanostructures using nitric acid: Characterization and evolution mechanism[J]. Ceramics International, 2016, 42(5): 5985-5994. DOI:10.1016/j.ceramint.2015.12.148.
[10] Bakardjieva S, Subrt J, Stengl V, et al. Photoactivity of anatase-rutile TiO2nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase[J]. Applied Catalysis B: Environmental, 2005, 58(3): 193-202. DOI:10.1016/j.apcatb.2004.06.019.
[11] Hassan M S, Amna T, Al-Deyab S S, et al. Toxicity of Ce2O3/TiO2 composite nanofibers against S. aureus and S.typhimurium: A novel electrospun material for disinfection of food pathogens[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415(48): 268-273. DOI:10.1016/j.colsurfa.2012.08.058.
[12] Abida B, Chirchi L, Baranton S, et al. Preparation and characterization of Pt/TiO2 nanotubes catalyst for methanol electro-oxidation[J]. Applied Catalysis B: Environmental, 2011, 106(3): 609-615. DOI:10.1016/j.apcatb.2011.06.022.
[13] Qin Y H, Li Y F, Lv R L, et al. Enhanced methanol oxidation activity and stability of Pt particles anchored on carbon-doped TiO2 nanocoating support[J]. Journal of Power Sources, 2015, 278: 639-644. DOI:10.1016/j.jpowsour.2014.12.096.
[14] Lazim H G, Ajeel K I, Badran H A. The photovoltaic efficiency of the fabrication of copolymer P3HT: PCBM on different thickness nano-anatase titania as solar cell[J]. Spectrochim Acta A: Mol Biomol Spectrosc, 2015, 145: 598-603. DOI:10.1016/j.saa.2015.02.096.
[15] Panigrahi M R, Panigrahi S. Structural analysis of 100% relative intense peak of Ba1-xCaxxTiO3 ceramics by X-ray powder diffraction method[J]. Physica B: Condensed Matter, 2010, 405(7): 1787-1791. DOI:10.1016/j.physb.2010.01.040.
[16] Spurr R A, Myers H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer[J]. Analytical Chemistry, 1957, 29(5): 760-762. DOI:10.1021/ac60125a006.
[17] Chen C S, Pan F M. Electrocatalytic activity of Pt nanoparticles deposited on porous TiO2 supports toward methanol oxidation[J]. Applied Catalysis B: Environmental, 2009, 91(3): 663-669. DOI:10.1016/j.apcatb.2009.07.008.
[18] Kim H R, Lee T G, Shul Y G. Photoluminescence of La/Ti mixed oxides prepared using sol-gel process and their pCBA photodecomposition[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185(2/3): 156-160. DOI:10.1016/j.jphotochem.2006.05.027.
[19] Aman N, Satapathy P K, Mishra T, et al. Synthesis and photocatalytic activity of mesoporous cerium doped TiO2 as visible light sensitive photocatalyst[J]. Materials Research Bulletin, 2012, 47(2): 179-183. DOI:10.1016/j.materresbull.2011.11.049.
[20] Chen Y F, Lee C Y, Yeng M Y, et al. The effect of calcination temperature on the crystallinity of TiO2 nanopowders[J]. Journal of Crystal Growth, 2003, 247(3): 363-370. DOI:10.1016/s0022-0248(02)01938-3.
[21] Tripathi A K, Singh M K, Mathpal M C, et al. Study of structural transformation in TiO2 nanoparticles and its optical properties[J]. Journal of Alloys and Compounds, 2013, 549: 114-120. DOI:10.1016/j.jallcom.2012.09.012.
[22] Meksi M, Turki A, Kochkar H, et al. The role of lanthanum in the enhancement of photocatalytic properties of TiO2 nanomaterials obtained by calcination of hydrogenotitanate nanotubes[J]. Applied Catalysis B: Environmental, 2016, 181: 651-660. DOI:10.1016/j.apcatb.2015.08.037.
[23] Huang J, Wang S R, Zhao Y Q, et al. Synthesis and characterization of CuO/TiO2 catalysts for low-temperature CO oxidation[J]. Catalysis Communications, 2006, 7(12): 1029-1034. DOI:10.1016/j.catcom.2006.05.001.
[24] Pant H R, Adhikari S P, Pant B, et al. Immobilization of TiO2nanofibers on reduced graphene sheets: novel strategy in electrospinning[J]. J Colloid Interface Sci, 2015, 457: 174-179. DOI:10.1016/j.jcis.2015.06.043.
[25] Lv K, Yu J G, Deng K J, et al. Effect of phase structures on the formation rate of hydroxyl radicals on the surface of TiO2[J]. Journal of Physics and Chemistry of Solids, 2010, 71(4): 519-522. DOI:10.1016/j.jpcs.2009.12.026.
[26] Bacsa R R, Kiwi J. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid[J]. Applied Catalysis B: Environmental, 1998, 16(1): 19-29. DOI:10.1016/s0926-3373(97)00058-1.
[27] Chaisubanan N, Pruksathorn K, Vergnes H, et al. Effect of the TiO2phase and loading on oxygen reduction reaction activity of PtCo/C catalysts in proton exchange membrane fuel cells[J]. Korean J Chem Eng, 2015, 32(7): 1305-1313. DOI:10.1007/s11814-014-0340-8.
[28] Chung S L, Wang C M. A sol-gel combustion synthesis method for TiO2powders with enhanced photocatalytic activity[J]. J Korean J Chem Eng, 2015, 32(7): 1305-1313. DOI:10.1007/s11814-014-0340-8.
[29] Ma X, Xue L H, Li X B, et al. Controlling the crystalline phase of TiO2 powders obtained by the solution combustion method and their photocatalysis activity[J]. Ceramics International, 2015, 41(9): 11927-11935. DOI:10.1016/j.ceramint.2015.05.161.
[30] Ohno T, Tokieda K, Higashida S, et al. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene[J]. Applied Catalysis A: General, 2003, 244(2): 383-391. DOI:10.1016/s0926-860x(02)00610-5.
[31] Yan M C, Chen F, Zhang J L, et al. Preparation of controllable crystalline titania and study on the photocatalytic properties[J]. The Journal of Physical Chemistry B, 2005, 109(18): 8673-8678. DOI:10.1021/jp046087i.
[32] 张鹏,贾立山,李清彪,等.金红石相含量对混晶纳米TiO2光催化分解水制氢的影响[J].化工进展,2008,27(9):1473-1476,1482.DOI:10.3321/j.issn:1000-6613.2008.09.032.
Zhang Peng, Jia Lishan, Li Qingbiao, et al. Effect of rutile content on photocatalytic water-splitting for hydrogen production over composite-crystal nano-TiO2[J]. Chemical Industry and Engineering Progress, 2008, 27(9): 1473-1476,1482. DOI:10.3321/j.issn:1000-6613.2008.09.032. (in Chinese)
[33] Wang W, Wang H, Key J, et al. Nanoparticulate TiO2-promoted PtRu/C catalyst for methanol oxidation[J]. Ionics, 2013, 19(3): 529-534. DOI:10.1007/s11581-012-0773-1.
[34] Kim J, Cho J. Spinel Li4Ti5O12 nanowires for high-rate Li-ion intercalation electrode[J]. Electrochemical and Solid-State Letters, 2007, 10(3): A81-A84. DOI:10.1149/1.2431242.
[35] Hoster H, Iwasita T, Baumgartner H, et al. Pt-Ru model catalysts for anodic methanol oxidation: Influence of structure and composition on the reactivity[J]. Physical Chemistry Chemical Physics, 2001(3): 337-346. DOI:10.1039/b004895j.
[36] Jiang J H, Kucernak A J. Electrooxidation of small organic molecules on mesoporous precious metal catalysts[J]. Journal of Electroanalytical Chemistry, 2003, 543(2): 187-199. DOI:10.1016/s0022-0728(03)00046-9.
[37] Han T, Zhang Z. Novel hydrolyzing synthesis of CeO2-RGO support for Pt electrocatalyst in direct methanol fuel cells[J]. Materials Letters, 2015, 154: 177-179. DOI:10.1016/j.matlet.2015.04.094.

备注/Memo

备注/Memo:
收稿日期: 2017-02-15.
作者简介: 刘香香(1992—),女,硕士生;郑颖平(联系人), 女, 博士, 副教授, ypz_99@163.com.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2013CB932902)、 国家自然科学基金资助项目(21475021,21427807)、江苏省自然科学基金资助项目(BK20141331).
引用本文: 刘香香,张鑫,张政英,等.焙烧温度对TiO2纳米纤维的组成及其载铂催化剂对甲醇电化学氧化活性的影响[J].东南大学学报(自然科学版),2017,47(5):979-986. DOI:10.3969/j.issn.1001-0505.2017.05.022.
更新日期/Last Update: 2017-09-20