[1]李灿军,周臻,朱亚智,等.单调荷载下钢材延性断裂损伤因子模型及参数校准[J].东南大学学报(自然科学版),2017,47(5):993-998.[doi:10.3969/j.issn.1001-0505.2017.05.024]
 Li Canjun,Zhou Zhen,Zhu Yazhi,et al.Damage factor model and parameter calibration for steel ductile fracture under monotonic tension[J].Journal of Southeast University (Natural Science Edition),2017,47(5):993-998.[doi:10.3969/j.issn.1001-0505.2017.05.024]
点击复制

单调荷载下钢材延性断裂损伤因子模型及参数校准()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第5期
页码:
993-998
栏目:
土木工程
出版日期:
2017-09-20

文章信息/Info

Title:
Damage factor model and parameter calibration for steel ductile fracture under monotonic tension
作者:
李灿军1周臻1朱亚智2卢璐3
1东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 210096; 2德州大学奥斯汀分校土木建筑和环境工程系, 奥斯汀 78703; 3国网江苏省电力公司经济技术研究院, 南京 210008
Author(s):
Li Canjun1 Zhou Zhen1 Zhu Yazhi2 Lu Lu3
1Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China
2Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin 78703, USA
3State Grid Jiangsu Economic Research Institute, Nanjing 210008, China
关键词:
Q235钢 延性断裂 损伤因子模型 单向拉伸试验 参数校准
Keywords:
Q235 steel ductile fracture damage factor model monotonic tension test parameter calibration
分类号:
TU391
DOI:
10.3969/j.issn.1001-0505.2017.05.024
摘要:
为提高钢材断裂模型的通用性和实时性,采用延性损伤因子概念,分别建立了基于VGM的VGM-DDF断裂模型和基于Johnson-Cook的JC-DDF断裂模型.结合不同槽口半径光滑圆棒试件的单向拉伸试验和有限元分析,研究了不同试件加载过程中应力三轴度和等效塑性应变的关系,并对国产Q235钢在单调荷载下延性断裂损伤因子模型参数进行了校准.采用校准后的断裂模型计算了各试件断裂损伤因子值,利用Abaqus软件对钢材断裂进行全过程模拟,并对不同的单元网格尺寸模型进行分析.结果表明:损伤因子模型的有效性得到验证,且JC-DDF模型离散性更小;断裂后荷载位移模拟曲线与试验曲线具有较好的吻合度;有限元单元网格尺寸影响断裂预测精度,并建议网格尺寸取0.25 mm.
Abstract:
To promote the applicability and the instantaneity of the steel fracture model, by adopting the concept of the ductile damage factor, the VGM-DDF and JC-DDF fracture predicted models were established based on the void growth model(VGM)and the Johnson-Cook model, respectively. Combining the monotonic tensile test of smooth bars with different notch radii and finite element analyses, the relationship between the stress triaxiality and the equivalent plastic strain during the loading process of various bars was studied, and the ductile fracture damage factor model parameters for China Q235 steels under monotonic tension were calibrated. The ductile damage factor of each component was calculated by using the calibrated models. The whole fracture process of steel was simulated by Abaqus software, and the models with different element mesh sizes were analyzed. The results show that the effectiveness of the ductile damage factor models was validated, and the discreteness of the JC-DDF model is smaller. The predicted displacement-load curves after fracture agree well with the test results. The finite element mesh size affects the fracture prediction accuracy, and the size is suggested to be 0.25 mm.

参考文献/References:

[1] Ricles J M, Sause R, Garlock M M, et al. Posttensioned seismic-resistant connections for steel frames[J]. Journal of Structural Engineering, 2001, 127(2): 113-121. DOI:10.1061/(asce)0733-9445(2001)127:2(113).
[2] Xie Q, Zhou Z, Li C, et al. Parametric analysis and direct displacement-based design method of self-centering energy-dissipative steel-braced frames[J]. International Journal of Structural Stability and Dynamics, 2016: 1750087. DOI:10.1142/s0219455417500870.
[3] 王伟, 廖芳芳, 陈以一. 基于微观机制的钢结构节点延性断裂预测与裂后路径分析[J]. 工程力学, 2014, 31(3):101-108.
  Wang Wei, Liao Fangfang, Chen Yiyi. Ductile fracture prediction and post-fracture path tracing of steel connections based on micromechanics-based fracture criteria[J]. Engineering Mechanics, 2014, 31(3):101-108.(in Chinese)
[4] Argon A S, Im J. Separation of second phase particles in spheroidized 1045 steel, Cu-0.6pct Cr alloy, and maraging steel in plastic straining[J]. Metallurgical Transactions A, 1975, 6(4): 839-851. DOI:10.1007/bf02672307.
[5] Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields [J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3): 201-217. DOI:10.1016/0022-5096(69)90033-7.
[6] Hancock J W, Mackenzie A C. On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states[J]. Journal of the Mechanics & Physics of Solids, 1976, 24(2/3):147-160. DOI:10.1016/0022-5096(76)90024-7.
[7] Kanvinde A M. Micromechanical simulation of earthquake-induced fracture in steel structures[D]. Palo Alto,California,USA: Department of Civil Environmental Engineering of Stanford University, 2004.
[8] Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48. DOI:10.1016/0013-7944(85)90052-9.
[9] Jia L J, Kuwamura H. Ductile fracture simulation of structural steels under monotonic tension[J]. Journal of Structural Engineering, 2013, 140(5): 04013115. DOI:10.1061/(asce)st.1943-541x.0000944.
[10] Liao F, Wang W, Chen Y. Parameter calibrations and application of micromechanical fracture models of structural steels[J]. Structural Engineering and Mechanics, 2012, 42(2): 153-174. DOI:10.12989/sem.2012.42.2.153.
[11] 廖芳芳, 王睿智, 李文超, 等. Q460钢基于微观机制的延性断裂判据研究[J]. 西安建筑科技大学学报(自然科学版), 2016, 48(4): 535-543,550. DOI:10.15986/j.1006-7930.2016.04.013.
Liao Fangfang, Wang Ruizhi, Li Wenchao, et al. Study on micro mechanism-based ductile fracture criteria for Q460 steel[J]. Journal of Xi’an University of Architecture & Technology(Natural Science Edition), 2016, 48(4): 535-543,550. DOI:10.15986/j.1006-7930.2016.04.013. (in Chinese)
[12] 周晖, 王元清, 石永久,等. 基于微观机理的梁柱节点焊接细节断裂分析[J]. 工程力学, 2015, 32(5):37-50.
  Zhou Hui, Wang Yuanqing, Shi Yongjiu, et al. Fracture analyses of welded details in beam-to-column connections using micromechanics-based models.[J]. Engineering Mechanics, 2015, 32(5):37-50.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2017-02-20.
作者简介: 李灿军(1991—),男,博士生;周臻(联系人),男,博士,教授,博士生导师,seuhj@163.com.
基金项目: 国家自然科学基金资助项目(51208095)、江苏省“青蓝工程”资助项目、江苏省六大人才高峰资助项目(JZ-003).
引用本文: 李灿军,周臻,朱亚智,等.单调荷载下钢材延性断裂损伤因子模型及参数校准[J].东南大学学报(自然科学版),2017,47(5):993-998. DOI:10.3969/j.issn.1001-0505.2017.05.024.
更新日期/Last Update: 2017-09-20