[1]郑文智,王浩,杜永峰,等.环境激励下基础隔震结构时变模态频率的温度效应[J].东南大学学报(自然科学版),2017,47(5):999-1005.[doi:10.3969/j.issn.1001-0505.2017.05.025]
 Zheng Wenzhi,Wang Hao,Du Yongfeng,et al.Temperature effect of time-varying modal frequency of base-isolated structure under ambient excitation[J].Journal of Southeast University (Natural Science Edition),2017,47(5):999-1005.[doi:10.3969/j.issn.1001-0505.2017.05.025]
点击复制

环境激励下基础隔震结构时变模态频率的温度效应()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第5期
页码:
999-1005
栏目:
土木工程
出版日期:
2017-09-20

文章信息/Info

Title:
Temperature effect of time-varying modal frequency of base-isolated structure under ambient excitation
作者:
郑文智1王浩1杜永峰2茅建校1
1东南大学混凝土及预应力混凝土结构教育部重点实验室, 南京 210096; 2兰州理工大学防震减灾研究所, 兰州 730050
Author(s):
Zheng Wenzhi1 Wang Hao1 Du Yongfeng2 Mao Jianxiao1
1Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China
2Institute of Earthquake Protection and Disaster Mitigation, Lanzhou University of Technology, Lanzhou 730050, China
关键词:
基础隔震结构 结构健康监测 小波变换 时变模态频率 温度效应
Keywords:
base-isolated structure structural health monitoring wavelet transform time-varying modal frequency temperature effect
分类号:
TU352.12
DOI:
10.3969/j.issn.1001-0505.2017.05.025
摘要:
基于实测隔震层温度和结构加速度响应数据,分析了环境温度对基础隔震结构模态频率的影响规律.首先,采用小波变换方法识别了基础隔震结构时变模态频率;然后,分别采用单自由度简化模型和双自由度简化模型推导了环境温度对基础隔震结构模态频率的影响机理,对基础隔震结构模态频率与隔震层温度进行了相关性分析,提出温度对模态频率的影响系数,量化了隔震层温度对隔震结构模态频率的影响,并结合隔震支座温度相关性试验,对相关性分析结果进行了验证;最后,通过参数回归分析,提出模态频率与温度的相关性模型,并给出了温度对基础隔震结构模态频率的影响系数曲线.结果表明,实测温度影响系数曲线与隔震支座温度相关性试验结果表现出较好的一致性,可为基础隔震结构的性能评估提供可靠依据.
Abstract:
Based on measured temperature and structural acceleration response of a base-isolated structure(BIS), the influence of the ambient temperature on the modal frequency of the BIS is analyzed. First, the wavelet transform method is used to identify the time-varying modal frequency of the BIS. Then, the influence mechanism of the ambient temperature on the modal frequency of the BIS is deduced by using the singular degree of freedom simplified model and the two degree of freedom simplified model, respectively. The correlation analysis between the modal frequency and the temperature of the BIS is investigated. The influence of the temperature on the modal frequency is quantitatively by the proposed influence coefficients. The correlation analysis results are verified by the temperature correlation test of isolation bearings. Finally, the correlation models of the modal frequency with the temperature are presented. The influence coefficient curves of the temperature on the modal frequency are obtained. The results show that the measured influence coefficient curves agree well with the correlation test results, which can provide reliable basis for performance of BISs.

参考文献/References:

[1] 李万润,郑文智,杜永峰,等.基础隔震结构健康监测系统的设计与实现(Ⅰ):系统设计[J].地震工程学报,2016,38(1):94-102. DOI:10.3969/j.issn.1000-0844.2016.01.0094.
Li Wanrun, Zheng Wenzhi, Du Yongfeng, et al. Design and implementation of structural health monitoring system for base-isolated structure(Ⅰ): System design[J]. China Earthquake Engineering Journal, 2016, 38(1): 94-102. DOI:10.3969/j.issn.1000-0844.2016.01.0094. (in Chinese)
[2] 杜永峰,郑文智,李万润,等.基础隔震结构健康监测系统的设计与实现(Ⅱ):系统实现[J].地震工程学报,2016,38(3):344-352. DOI:10.3969/j.issn.1000-0844.2016.03.0344.
Du Yongfeng, Zheng Wenzhi, Li Wanrun, et al. Design and implementation of health monitoring system for base-isolated structure(Ⅱ): System implementation[J]. China Earthquake Engineering Journal, 2016, 38(3): 344-352. DOI:10.3969/j.issn.1000-0844.2016.03.0344. (in Chinese)
[3] 闵志华,孙利民,淡丹辉.影响斜拉桥模态参数变化的环境因素分析[J].振动与冲击,2009,28(10):99-105. DOI:10.3969/j.issn.1000-3835.2009.10.020.
Min Zhihua, Sun Limin, Dan Danhui. Effect analysis of environmental factors on structural modal parameters of a cable-stayed bridge[J]. Journal of Vibration and Shock, 2009, 28(10): 99-105. DOI:10.3969/j.issn.1000-3835.2009.10.020. (in Chinese)
[4] 邓扬,李爱群,刘扬,等.基于监测数据的大跨度悬索桥频率与环境条件的相关性模型[J].中南大学学报(自然科学版),2014,45(7):2401-2409.
  Deng Yang, Li Aiqun, Liu Yang, et al. Correlation models of modal frequencies and environmental conditions for a long-span suspension bridge based on monitoring data[J]. Journal of Central South University(Science and Technology), 2014, 45(7): 2401-2409.(in Chinese)
[5] Kijewski T, Kareem A. Wavelet transforms for system identification in civil engineering[J]. Computer-Aided Civil and Infrastructure Engineering, 2003, 18(5): 339-355. DOI:10.1111/1467-8667.t01-1-00312.
[6] Lardies J, Ta M N, Berthillier M. Modal parameter estimation based on the wavelet transform of output data[J]. Archive of Applied Mechanics(Ingenieur Archiv), 2004, 73(9): 718-733. DOI:10.1007/s00419-004-0329-6.
[7] 滕军,朱焰煌,周峰,等.基于复Morlet小波变换的大跨空间结构模态参数识别研究[J].振动与冲击,2009,28(8):25-29. DOI:10.3969/j.issn.1000-3835.2009.08.006.
Teng Jun, Zhu Yanhuang, Zhou Feng, et al. Modal parameters identification of large-span spatial structures based on complex Morlet wavelet transform[J]. Journal of Vibration and Shock, 2009, 28(8): 25-29. DOI:10.3969/j.issn.1000-3835.2009.08.006. (in Chinese)
[8] 刘文光,杨巧荣,周福霖.建筑用铅芯橡胶隔震支座温度性能研究[J].世界地震工程,2003,19(2):39-44. DOI:10.3969/j.issn.1007-6069.2003.02.007.
Liu Wenguang, Yang Qiaorong, Zhou Fulin. Temperature properties of lead rubber bearings for building[J]. World Earthquake Engineering, 2003, 19(2): 39-44. DOI:10.3969/j.issn.1007-6069.2003.02.007. (in Chinese)
[9] 李黎,叶昆,江宜城.橡胶铅芯隔震支座力学性能的温度效应研究[J].华中科技大学学报(城市科学版),2009,26(3):1-3. DOI:10.3969/j.issn.2095-0985.2009.03.001.
Li Li, Ye Kun, Jiang Yicheng. Thermal effect on the mechanical behavior of lead-rubber bearing[J]. Journal of Huazhong University of Science and Technology(Urban Science Edition), 2009, 26(3): 1-3. DOI:10.3969/j.issn.2095-0985.2009.03.001. (in Chinese)
[10] 刘文光,秦皇婷,何文福,等.极低温度下LRB力学性能及对高层结构地震响应的影响[J].振动与冲击,2012,31(13):85-90. DOI:10.3969/j.issn.1000-3835.2012.13.018.
Liu Wenguang, Qin Huangting, He Wenfu, et al. Mechanical properties of LRB in low temperature state and its influence on earthquake response of high buildings[J]. Journal of Vibration and Shock, 2012, 31(13): 85-90. DOI:10.3969/j.issn.1000-3835.2012.13.018. (in Chinese)
[11] Ding Y L, Li A Q, Liu T. Environmental variability study on the measured responses of Runyang Cable-stayed Bridge using wavelet packet analysis[J]. Science in China Series E: Technological Sciences, 2008, 51(5): 517-528.DOI:10.1007/s11431-008-0043-7.
[12] Li H, Li S L, Ou J P, et al. Modal identification of bridges under varying environmental conditions: Temperature and wind effects[J]. Structural Control and Health Monitoring, 2010, 17(5): 495-512. DOI:10.1002/stc.319.
[13] Mosavi A A, Seracino R, Rizkalla S. Effect of temperature on daily modal variability of a steel-concrete composite bridge[J]. Journal of Bridge Engineering, 2012, 17(6): 979-983. DOI:10.1061/(asce)be.1943-5592.0000372.
[14] 朱文正,张季超.基于智能传感技术的广东科学中心隔震系统实时监测研究[J].土木工程学报,2014,47(5):40-45. DOI:10.15951/j.tmgcxb.2014.05.013.
Zhu Wenzheng, Zhang Jichao. Real time monitoring of isolation system of Guangdong Science Center based on intelligent sensor technology[J]. China Civil Engineering Journal, 2014, 47(5): 40-45. DOI:10.15951/j.tmgcxb.2014.05.013. (in Chinese)
[15] 杜永峰,郑文智,李万润,等.超长复杂基础隔震结构静动力特性温度相关性研究[J].工程力学,2017,34(7):69-78.
  Du Yongfeng, Zheng Wenzhi, Li Wanrun, et al. Study on the dependency of static and dynamic characteristics with environmental temperature for long irregular base-isolated structures[J]. Engineering Mechanics, 2017, 34(7): 69-78.(in Chinese)
[16] 中华人民共和国住房和城乡建设部.GB50011—2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
[17] Yan B, Miyamoto A. A comparative study of modal parameter identification based on wavelet and Hilbert-Huang transforms[J]. Computer-Aided Civil and Infrastructure Engineering, 2006, 21(1): 9-23. DOI:10.1111/j.1467-8667.2005.00413.x.
[18] 刘晶波,杜修力.结构动力学[M].北京:机械工业出版社,2005:38-39.
[19] 李中锡,周锡元.规则型隔震房屋的自振特性和地震反应分析方法[J].地震工程与工程振动,2002,22(2):33-41. DOI:10.13197/j.eeev.2002.02.006.
Li Zhongxi, Zhou Xiyuan. Simplified analysis method of seismically isolated regular building[J]. Earthquake Engineering and Engineering Vibration, 2002, 22(2): 33-41. DOI:10.13197/j.eeev.2002.02.006. (in Chinese)

相似文献/References:

[1]李爱群,周广东.光纤Bragg光栅传感器测试技术研究进展与展望(Ⅰ):应变、温度测试[J].东南大学学报(自然科学版),2009,39(6):1298.[doi:10.3969/j.issn.1001-0505.2009.06.041]
 Li Aiqun,Zhou Guangdong.Progress and prospect of fiber Bragg grating sensors measurement technology(Ⅰ): strain and temperature measurement[J].Journal of Southeast University (Natural Science Edition),2009,39(5):1298.[doi:10.3969/j.issn.1001-0505.2009.06.041]
[2]李爱群,丁幼亮,费庆国,等.润扬大桥斜拉桥模态频率识别的环境变异性[J].东南大学学报(自然科学版),2007,37(2):245.[doi:10.3969/j.issn.1001-0505.2007.02.013]
 Li Aiqun,Ding Youliang,Fei Qingguo,et al.Environmental variability in modal frequency identification of Runyang Cable-Stayed Bridge[J].Journal of Southeast University (Natural Science Edition),2007,37(5):245.[doi:10.3969/j.issn.1001-0505.2007.02.013]
[3]黄盛楠,叶列平,陆新征,等.CFRP预警传感器的研究[J].东南大学学报(自然科学版),2006,36(5):810.[doi:10.3969/j.issn.1001-0505.2006.05.026]
 Huang Shengnan,Ye Lieping,Lu Xinzheng,et al.Research on CFRP alarm sensors[J].Journal of Southeast University (Natural Science Edition),2006,36(5):810.[doi:10.3969/j.issn.1001-0505.2006.05.026]
[4]缪长青,李爱群.异形钢管混凝土系杆拱桥结构健康监测系统[J].东南大学学报(自然科学版),2011,41(6):1241.[doi:10.3969/j.issn.1001-0505.2011.06.022]
 Miao Changqing,Li Aiqun.Structural health monitoring system for special-shaped concrete-filled steel tubular arch bridge[J].Journal of Southeast University (Natural Science Edition),2011,41(5):1241.[doi:10.3969/j.issn.1001-0505.2011.06.022]
[5]蔡建,袁慎芳,邱雷,等.基于波包能量的裂纹扩展监测实验研究[J].东南大学学报(自然科学版),2009,39(3):477.[doi:10.3969/j.issn.1001-0505.2009.03.012]
 Cai Jian,Yuan Shenfang,Qiu Lei,et al.Experimental study on crack growth monitoring based on wave packet energy[J].Journal of Southeast University (Natural Science Edition),2009,39(5):477.[doi:10.3969/j.issn.1001-0505.2009.03.012]
[6]李爱群,周广东.光纤Bragg光栅传感器测试技术研究进展与展望(Ⅱ):位移、加速度、索力、钢筋锈蚀、裂缝测试[J].东南大学学报(自然科学版),2009,39(6):1307.[doi:10.3969/j.issn.1001-0505.2009.06.042]
 Li Aiqun,Zhou Guangdong.Progress and prospect of fiber Bragg grating sensors measurement technology(Ⅱ): displacement, acceleration, cable force, corrosion, and crack measurement[J].Journal of Southeast University (Natural Science Edition),2009,39(5):1307.[doi:10.3969/j.issn.1001-0505.2009.06.042]
[7]邓扬,李爱群,丁幼亮.基于最大熵理论的润扬悬索桥桥址极值风速预测[J].东南大学学报(自然科学版),2008,38(5):758.[doi:10.3969/j.issn.1001-0505.2008.05.004]
 Deng Yang,Li Aiqun,Ding Youliang.Prediction of extreme wind speed for Runyang Suspension Bridge spot based on maximum entropy theory[J].Journal of Southeast University (Natural Science Edition),2008,38(5):758.[doi:10.3969/j.issn.1001-0505.2008.05.004]
[8]李兆霞.大型土木结构多尺度损伤预后的现状、研究思路与前景[J].东南大学学报(自然科学版),2013,43(5):1111.[doi:10.3969/j.issn.1001-0505.2013.05.034]
 Li Zhaoxia.State of the art in multi-scale damage prognosis for major infrastructures[J].Journal of Southeast University (Natural Science Edition),2013,43(5):1111.[doi:10.3969/j.issn.1001-0505.2013.05.034]
[9]黄兴淮,徐赵东,Dyke Shirley.基于能量原理和Kalman滤波器的实时模型修正策略[J].东南大学学报(自然科学版),2015,45(3):539.[doi:10.3969/j.issn.1001-0505.2015.03.022]
 Huang Xinghuai,Xu Zhaodong,Dyke Shirley.In-time model updating strategy based on energy theory and Kalman filter[J].Journal of Southeast University (Natural Science Edition),2015,45(5):539.[doi:10.3969/j.issn.1001-0505.2015.03.022]
[10]黄其欢,丁幼亮,王一安,等.基于InSAR的南京大胜关大桥纵向位移监测与分析[J].东南大学学报(自然科学版),2017,47(3):584.[doi:10.3969/j.issn.1001-0505.2017.03.028]
 Huang Qihuan,Ding Youliang,Wang Yian,et al.InSAR-based longitudinal displacement monitoring and analysis on Nanjing Dashengguan bridge[J].Journal of Southeast University (Natural Science Edition),2017,47(5):584.[doi:10.3969/j.issn.1001-0505.2017.03.028]

备注/Memo

备注/Memo:
收稿日期: 2016-11-25.
作者简介: 郑文智(1992—),男,博士生;王浩(联系人),男,博士,研究员,博士生导师,wanghao1980@seu.edu.com.
基金项目: 国家重点基础研究发展计划(973计划)青年科学家专题资助项目(2015CB060000)、国家自然科学基金资助项目(51578151,51438002)、中央高校基本科研业务费专项资金资助项目(2242015K42028).
引用本文: 郑文智,王浩,杜永峰,等.环境激励下基础隔震结构时变模态频率的温度效应[J].东南大学学报(自然科学版),2017,47(5):999-1005. DOI:10.3969/j.issn.1001-0505.2017.05.025.
更新日期/Last Update: 2017-09-20