[1]刘修宇,曹青青,朱晟泽,等.沥青混凝土路面轮胎临界滑水速度数值模拟[J].东南大学学报(自然科学版),2017,47(5):1020-1025.[doi:10.3969/j.issn.1001-0505.2017.05.028]
 Liu Xiuyu,Cao Qingqing,Zhu Shengze,et al.Numerical simulation of tire critical hydroplaning speed on asphalt pavement[J].Journal of Southeast University (Natural Science Edition),2017,47(5):1020-1025.[doi:10.3969/j.issn.1001-0505.2017.05.028]
点击复制

沥青混凝土路面轮胎临界滑水速度数值模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第5期
页码:
1020-1025
栏目:
材料科学与工程
出版日期:
2017-09-20

文章信息/Info

Title:
Numerical simulation of tire critical hydroplaning speed on asphalt pavement
作者:
刘修宇1曹青青1朱晟泽1黄晓明1林梅2
1东南大学交通学院, 南京 210096; 2兰州理工大学土木工程学院, 兰州 730050
Author(s):
Liu Xiuyu1 Cao Qingqing1 Zhu Shengze1 Huang Xiaoming1 Lin Mei2
1School of Transportation, Southeast University, Nanjing 210096, China
2School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
关键词:
轮胎滑水 沥青路面模型 轮胎花纹 欧拉-拉格朗日耦合算法 水膜厚度
Keywords:
tire hydroplaning asphalt pavement model tire pattern coupled Eulerian-Lagrangian algorithm thickness of water film
分类号:
TU528.1
DOI:
10.3969/j.issn.1001-0505.2017.05.028
摘要:
为了揭示沥青混凝土路面轮胎滑水力学机理、评估各项因素对临界滑水速度的影响,运用数值模拟方法,建立了沥青路面模型和花纹充气轮胎模型,并利用欧拉-拉格朗日耦合算法建立了轮胎滑水模型.对滑水模型的适用性与精确性进行了验证,模拟计算出轮胎路面竖向接触力变化曲线以及临界滑水速度,并对轮胎花纹、轮胎充气压力、水膜厚度和路面类型的影响进行了评估.结果表明:增加轮胎花纹复杂度可增大轮胎行驶振动强度,减少水膜对轮胎的托举作用;提升轮胎充气压力和减小水膜厚度可以有效提高轮胎路面竖向接触力和临界滑水速度;OGFC路面在防止滑水现象发生方面显著优于AC路面和SMA路面,MPD值可用于评估有水路面的滑水性能.
Abstract:
To reveal the mechanism of tire hydroplaning on asphalt pavement and evaluate the effects of the factors on the critical hydroplaning speed, an asphalt pavement model and a tire model with pattern were built, and the tire hydroplaning model was simulated by using the coupled Eulerian-Lagrangian algorithm.The applicability and the accuracy of this tire hydroplaning model were validated.The contact force variation curve at the tire-pavement interface and the critical hydroplaning speed were calculated. The influence of the tire pattern, the inflation pressure, the thickness of the water film and the pavement type on the contact force at the tire-pavement interface and the critical hydroplaning speed were investigated.The results show that the increase of the complexity of the tire pattern can increase the strength of the tire vibration and decrease the lift force of the water film to the tire. The increase of the tire inflation pressure and the decrease of the water film thickness can increase the contact force at the tire-pavement interface and the critical hydroplaning speed. The OGFC(open graded friction course)pavement is superior than the AC(asphalt concrete)pavement and the SMA(stone mastic asphalt)pavement in preventing hydroplaning. The MPD(mean profile depth)value can be used for evaluating the hydroplaning performance of the tire on flooded pavement.

参考文献/References:

[1] Horne W B, Joyner U T. Pneumatic tire hydroplaning and some effects on vehicle performance[J]. SAE Technical Paper Series, 1965: 650145. DOI:10.4271/650145.
[2] Yager T J. Comparative braking performance of various aircraft on grooved and ungrooved pavements at the landing research runway, NASA Wallops Station[C]//Pavement Grooving and Traction Studies. Hampton, VA, USA, 1969:35-65.
[3] Wies B, Roeger B, Mundl R. Influence of pattern void on hydroplaning and related target conflicts[J]. Tire Science & Technology, 2009, 37(3): 187-206. DOI:10.2346/1.3137087.
[4] Ong G, Fwa T. Effectiveness of transverse and longitudinal pavement grooving in wet-skidding control[J]. Transportation Research Record: Journal of the Transportation Research Board, 2007, 2005: 172-182. DOI:10.3141/2005-18.
[5] Fwa T F, Pasindu H R, Ong G P. Critical rut depth for pavement maintenance based on vehicle skidding and hydroplaning consideration[J]. Journal of Transportation Engineering, 2012, 138(4):423-429.DOI:10.1061/(asce)te.1943-5436.0000336.
[6] Chu L, Fwa T F. Incorporating pavement skid resistance and hydroplaning risk considerations in asphalt mix design[J]. Journal of Transportation Engineering, 2016, 142(10):04016039. DOI:10.1061/(asce)te.1943-5436.0000872.
[7] Srirangam S, Anupam K, Scarpas A, et al. Safety aspects of wet asphalt pavement surfaces through field and numerical modeling investigations[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014, 2446: 37-51. DOI:10.3141/2446-05.
[8] 季天剑,高玉峰,陈荣生. 轿车轮胎动力滑水分析[J]. 交通运输工程学报, 2010(5): 57-60.
  Ji Tianjian, Gao Yufeng, Chen Rongsheng. Dynamic hydroplaning analysis of car tire [J]. Journal of Traffic and Transportation Engineering, 2010(5): 57-60.(in Chinese)
[9] 王国林,陈海荣. 子午线轮胎滑水仿真分析[J]. 系统仿真学报, 2012, 24(8): 1719-1722.
  Wang Guolin, Chen Hairong. Simulation analysis of hydroplaning characteristics of radial tire[J]. Journal of System Simulation, 2012, 24(8): 1719-1722.(in Chinese)
[10] Zhou H, Wang G, Ding Y, et al. Effect of friction model and tire maneuvering on tire-pavement contact stress[J]. Advances in Materials Science and Engineering, 2015, 2015: 1-11. DOI:10.1155/2015/632647.
[11] Zhu S, Liu X, Cao Q, et al. Numerical study of tire hydroplaning based on power spectrum of asphalt pavement and kinetic friction coefficient[J]. Advances in Materials Science and Engineering, 2017, 2017: 1-11. DOI:10.1155/2017/5843061.
[12] Praticò F G, Vaiana R. A study on the relationship between mean texture depth and mean profile depth of asphalt pavements[J]. Construction and Building Materials, 2015, 101: 72-79. DOI:10.1016/j.conbuildmat.2015.10.021.
[13] 朱晟泽,黄晓明. 横向刻槽混凝土路面轮胎滑水速度数值模拟研究[J]. 东南大学学报(自然科学版), 2016, 46(6): 1296-1300. DOI:10.3969/j.issn.1001-0505.2016.06.031.
Zhu Shengze, Huang Xiaoming. Numerical simulation of tire hydroplaning speed on transverse grooved concrete pavements [J]. Journal of Southeast University(Natural Science Edition), 2016, 46(6): 1296-1300. DOI:10.3969/j.issn.1001-0505.2016.06.031. (in Chinese)
[14] Subramaniam S. Lagrangian-Eulerian methods for multiphase flows [J]. Progress in Energy & Combustion Science, 2013, 39(2/3):215-245.

备注/Memo

备注/Memo:
收稿日期: 2017-02-26.
作者简介: 刘修宇(1992—),男,硕士生;黄晓明(联系人),男,博士,教授,博士生导师,huangxm@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51378121).
引用本文: 刘修宇,曹青青,朱晟泽,等.沥青混凝土路面轮胎临界滑水速度数值模拟[J].东南大学学报(自然科学版),2017,47(5):1020-1025. DOI:10.3969/j.issn.1001-0505.2017.05.028.
更新日期/Last Update: 2017-09-20