[1]李思杰,徐瑞华,杨儒冬.基于运力协调的城市轨道交通网络列车运行计划优化[J].东南大学学报(自然科学版),2017,47(5):1048-1054.[doi:10.3969/j.issn.1001-0505.2017.05.033]
 Li Sijie,Xu Ruihua,Yang Rudong.Optimizing urban rail transit network operation plans based on transport capacity coordination[J].Journal of Southeast University (Natural Science Edition),2017,47(5):1048-1054.[doi:10.3969/j.issn.1001-0505.2017.05.033]
点击复制

基于运力协调的城市轨道交通网络列车运行计划优化()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第5期
页码:
1048-1054
栏目:
交通运输工程
出版日期:
2017-09-20

文章信息/Info

Title:
Optimizing urban rail transit network operation plans based on transport capacity coordination
作者:
李思杰徐瑞华杨儒冬
同济大学道路与交通工程教育部重点实验室, 上海 201804
Author(s):
Li Sijie Xu Ruihua Yang Rudong
The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, China
关键词:
城市轨道交通 列车运行计划 运力协调 整数规划 遗传算法
Keywords:
urban rail transit train operation plan transport capacity coordination integer programming genetic algorithm
分类号:
U239.5
DOI:
10.3969/j.issn.1001-0505.2017.05.033
摘要:
针对高峰时间客流量大、换乘站客流风险突出的情况,从能力匹配角度研究了城市轨道交通网络运输组织协调方法.分析了站台客流的变化规律,确定了列车疏解能力、候车客流需求、站台最大聚集人数的计算方法.提出了运力协调度的概念,用以描述客流需求与各线运输能力的匹配程度.以换乘站整体的运力协调度最优为目标,以首班列车发车时刻和列车运行间隔为决策变量,以保证站内客流安全为主要约束,建立了列车运行计划协同优化的非线性整数规划模型,并采用遗传算法求解.对某两线相交网络进行算例分析表明:采用运力协调方案后,列车开行总数仅增加1列,留乘人数减少了68.44%,运力协调度更接近1,大客流方向站台的最大聚集人数分别降低11.77%与19.68%,各方向的运能供给更好地适应客流需求,可有效提高乘客和运营企业双方的利益.
Abstract:
In view of big passenger flow volume and high passenger risk at transfer stations during the peak period, this paper studied the coordination method for urban rail transit network transportation organization from the perspective of capability matching. The change rules of passenger flow were analyzed, and the calculation methods for train evacuation capacity, waiting passenger demand and the largest number of people gathered on the platform were determined. The concept of capacity coordination degree(CCD)was proposed used to describe the matching degree between the traffic demand and the transport capacity of each line. Based on this, taking the optimal comprehensive CCD of the transfer station as the goal, the first train departure time and train running interval as decision variables, and the guarantee of passenger safety at the station as the main constraint, a nonlinear integer programming model of train operation plans collaborative optimization was established, and the genetic algorithm was designed. A case study of a two-line intersecting network was carried out. The results show that, after the use of capacity coordination scheme, the total number of trains only increases by 1, the remaining passengers reduce by 68.44%, comprehensive CCD is closer to 1, and the largest number of people gathered in big passenger flow directions decrease by 11.77% and 19.68%, respectively. The transport supply can better meet the passenger demands in all directions, thus improving the interests of both passengers and operating companies.

参考文献/References:

[1] 房霄虹.城市轨道交通网络化运输组织协调理论及方法研究[D].北京:北京交通大学交通运输学院,2011.
[2] Wong R C W, Yuen T W Y, Fung K W, et al. Optimizing timetable synchronization for rail mass transit[J]. Transportation Science, 2008, 42(1): 57-69. DOI:10.1287/trsc.1070.0200.
[3] Shafahi Y, Khani A. A practical model for transfer optimization in a transit network: Model formulations and solutions[J]. Transportation Research Part A: Policy and Practice, 2010, 44(6): 377-389. DOI:10.1016/j.tra.2010.03.007.
[4] Parbo J, Nielsen O A, Prato C G. User perspectives in public transport timetable optimisation[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 269-284. DOI:10.1016/j.trc.2014.09.005.
[5] Wu J J, Liu M H, Sun H J, et al. Equity-based timetable synchronization optimization in urban subway network[J]. Transportation Research Part C: Emerging Technologies, 2015, 51: 1-18. DOI:10.1016/j.trc.2014.11.001.
[6] Tuzun Aksu D, Yllmaz S. Transit coordination with heterogeneous headways[J]. Transportation Planning and Technology, 2014, 37(5): 450-465. DOI:10.1080/03081060.2014.912419.
[7] Kang L J, Wu J J, Sun H J, et al. A case study on the coordination of last trains for the Beijing subway network[J]. Transportation Research Part B: Methodological, 2015, 72: 112-127. DOI:10.1016/j.trb.2014.09.003.
[8] Kang L J, Zhu X N, Sun H J, et al. Modeling the first train timetabling problem with minimal missed trains and synchronization time differences in subway networks[J]. Transportation Research Part B: Methodological, 2016, 93: 17-36. DOI:10.1016/j.trb.2016.07.006.
[9] Goossens J W, van Hoesel S, Kroon L. A branch-and-cut approach for solving railway line-planning problems[J]. Transportation Science, 2004, 38(3): 379-393. DOI:10.1287/trsc.1030.0051.
[10] Yalçlnkaya Ö, Mirac Bayhan G. Modelling and optimization of average travel time for a metro line by simulation and response surface methodology[J]. European Journal of Operational Research, 2009, 196(1): 225-233. DOI:10.1016/j.ejor.2008.03.010.
[11] 严波.城市轨道交通行车间隔时间优化模型研究[J].城市轨道交通研究,2008,11(6):53-57,62. DOI:10.3969/j.issn.1007-869X.2008.06.015.
Yan Bo. The optimization model of train headway time in urban rail transit[J]. Urban Mass Transit, 2008, 11(6): 53-57,62. DOI:10.3969/j.issn.1007-869X.2008.06.015. (in Chinese)
[12] 陈胜波,何世伟,何必胜.客流波动条件下城市轨道交通列车开行方案研究[J].城市轨道交通研究,2013,16(10):53-58. DOI:10.3969/j.issn.1007-869X.2013.10.013.
Chen Shengbo, He Shiwei, He Bisheng. Train service planning for urban rail transit with passenger fluctuation[J]. Urban Mass Transit, 2013, 16(10): 53-58. DOI:10.3969/j.issn.1007-869X.2013.10.013. (in Chinese)
[13] Chowdhury M S, Chien S I. Optimization of transfer coordination for intermodal transit networks[C]//Transportation Research Board 80th Annual Meeting. Washington, DC, USA: TRB, 2001: 01-0205.
[14] Canca D, Barrena E, De-Los-Santos A, et al. Setting lines frequency and capacity in dense railway rapid transit networks with simultaneous passenger assignment[J]. Transportation Research Part B: Methodological, 2016, 93: 251-267. DOI:10.1016/j.trb.2016.07.020.
[15] Bai G, Wang X, Hou Y, et al. Optimization method study for capacity coordination between urban rail transit lines[C]//Proceedings of the Fifth International Conference on Transportation Engineering. Dalian, China: ASCE, 2015: 3164-3173.
[16] 汪波,韩宝明,牛丰,等.城市轨道交通网络运力优化配置研究[J].铁道学报,2011,33(12):9-14. DOI:10.3969/j.issn.1001-8360.2011.12.002.
Wang Bo, Han Baoming, Niu Feng, et al. Study on optimization of transport capacity allocation for urban mass transit network[J]. Journal of the China Railway Society, 2011, 33(12): 9-14. DOI:10.3969/j.issn.1001-8360.2011.12.002. (in Chinese)
[17] 张铭,王富章,李平.城市轨道交通网络化运营辅助决策与应急平台[J].中国铁道科学,2012,33(1):113-120. DOI:10.3969/j.issn.1001-4632.2012.01.18.
Zhang Ming, Wang Fuzhang, Li Ping. The platform of network operation assistant decision marking and emergency for urban rail transit[J]. China Railway Science, 2012, 33(1): 113-120. DOI:10.3969/j.issn.1001-4632.2012.01.18. (in Chinese)
[18] 金芬.遗传算法在函数优化中的应用研究[D].苏州:苏州大学电子信息学院,2008.
[19] Niu H M, Zhou X S. Optimizing urban rail timetable under time-dependent demand and oversaturated conditions[J]. Transportation Research Part C: Emerging Technologies, 2013, 36: 212-230. DOI:10.1016/j.trc.2013.08.016.

相似文献/References:

[1]韩豫,成虎.城市轨道交通运营安全管理协同机制[J].东南大学学报(自然科学版),2012,42(1):177.[doi:10.3969/j.issn.1001-0505.2012.01.033]
 Han Yu,Cheng Hu.Coordination mechanism for operation safety management of urban mass transit[J].Journal of Southeast University (Natural Science Edition),2012,42(5):177.[doi:10.3969/j.issn.1001-0505.2012.01.033]
[2]石俊刚,周峰,朱炜,等.基于AFC数据的城轨乘客出行路径选择比例估计方法[J].东南大学学报(自然科学版),2015,45(1):184.[doi:10.3969/j.issn.1001-0505.2015.01.032]
 Shi Jungang,Zhou Feng,Zhu Wei,et al.Estimation method of passenger route choice proportion in urban rail transit based on AFC data[J].Journal of Southeast University (Natural Science Edition),2015,45(5):184.[doi:10.3969/j.issn.1001-0505.2015.01.032]
[3]李曼,王艳辉,贾利民.城市轨道交通车站客流模态与控制策略[J].东南大学学报(自然科学版),2015,45(6):1203.[doi:10.3969/j.issn.1001-0505.2015.06.032]
 Li Man,Wang Yanhui,Jia Limin.Passenger flow modes and control strategies in urban rail transit station[J].Journal of Southeast University (Natural Science Edition),2015,45(5):1203.[doi:10.3969/j.issn.1001-0505.2015.06.032]
[4]曹志超,袁振洲,李得伟.城市轨道交通同步协调的优化模型[J].东南大学学报(自然科学版),2016,46(1):221.[doi:10.3969/j.issn.1001-0505.2016.01.036]
 Cao Zhichao,Yuan Zhenzhou,Li Dewei.Synchronization and coordination optimization model of urban rail transit[J].Journal of Southeast University (Natural Science Edition),2016,46(5):221.[doi:10.3969/j.issn.1001-0505.2016.01.036]
[5]豆飞,潘晓军,秦勇,等.基于云模型的城市轨道交通车站客流控制触发判别方法[J].东南大学学报(自然科学版),2016,46(6):1318.[doi:10.3969/j.issn.1001-0505.2016.06.035]
 Dou Fei,Pan Xiaojun,Qin Yong,et al.Identification method for passenger inflow control in urban rail transit station based on cloud model[J].Journal of Southeast University (Natural Science Edition),2016,46(5):1318.[doi:10.3969/j.issn.1001-0505.2016.06.035]
[6]李曼,王艳辉,晋君,等.基于路网客流模态的城市轨道交通网络拥堵演变机理[J].东南大学学报(自然科学版),2017,47(2):404.[doi:10.3969/j.issn.1001-0505.2017.02.033]
 Li Man,Wang Yanhui,Jin Jun,et al.Network congestion evolution law of urban rail transit based on network passenger flow mode[J].Journal of Southeast University (Natural Science Edition),2017,47(5):404.[doi:10.3969/j.issn.1001-0505.2017.02.033]

备注/Memo

备注/Memo:
收稿日期: 2017-03-04.
作者简介: 李思杰(1991—),女,博士生;徐瑞华(联系人),男,博士,教授,博士生导师,rhxu@tongji.edu.cn.
基金项目: 国家自然科学基金资助项目(61473210).
引用本文: 李思杰,徐瑞华,杨儒冬.基于运力协调的城市轨道交通网络列车运行计划优化[J].东南大学学报(自然科学版),2017,47(5):1048-1054. DOI:10.3969/j.issn.1001-0505.2017.05.033.
更新日期/Last Update: 2017-09-20