[1]宋晓东,李奇,吴定俊.一种轨道交通高架线路噪声衰减规律的预测方法[J].东南大学学报(自然科学版),2017,47(5):1055-1061.[doi:10.3969/j.issn.1001-0505.2017.05.034]
 Song Xiaodong,Li Qi,Wu Dingjun.Prediction method for noise attenuation in elevated rail transit lines[J].Journal of Southeast University (Natural Science Edition),2017,47(5):1055-1061.[doi:10.3969/j.issn.1001-0505.2017.05.034]
点击复制

一种轨道交通高架线路噪声衰减规律的预测方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第5期
页码:
1055-1061
栏目:
交通运输工程
出版日期:
2017-09-20

文章信息/Info

Title:
Prediction method for noise attenuation in elevated rail transit lines
作者:
宋晓东1李奇2吴定俊2
1东南大学交通学院, 南京 210096; 2同济大学桥梁工程系, 上海 200092
Author(s):
Song Xiaodong1 Li Qi2 Wu Dingjun2
1School of Transportation, Southeast University, Nanjing 210096, China
2Department of Bridge Engineering, Tongji University, Shanghai 200092, China
关键词:
轨道交通 高架线路 噪声预测 噪声衰减
Keywords:
urban rail transit elevated lines noise prediction noise attenuation
分类号:
U448.21;TB532
DOI:
10.3969/j.issn.1001-0505.2017.05.034
摘要:
提出了一种基于二维振动声辐射模型预测轨道交通高架线路钢轨和桥梁辐射噪声衰减规律的简化方法.首先,通过精细化的2.5维声学计算方法探究了传统线声源简化模型在预测桥梁噪声和钢轨噪声时的适用性.然后,结合板的理论模型和三维车辆-轨道-桥梁耦合振动模型探讨了采用二维模型来模拟桥梁和钢轨振动的可行性.最后,基于二维振动声辐射模型分别预测了钢轨和桥梁的远场噪声衰减值,并与2.5维声学模型的计算结果进行了对比验证.研究表明,在振动频率100 Hz以上,钢轨和桥梁的振动沿线路方向分布较为均匀时,基于二维模型预测高架线路噪声衰减规律的简化方法具有一定的精度,该方法可用于预测远场A声级噪声.
Abstract:
A numerical method based on the two-dimensional(2D)vibro-acoustic model was proposed to predict the sound attenuation of rail noises and bridge noises in elevated rail transit lines. First, a refined two-and-a-half dimensional(2.5D)acoustic model was used to evaluate the applicability of the traditional simplified line source model. Then, the theoretical plate model and three-dimensional(3D)vehicle-track-bridge coupling model were used to discuss the feasibility of using the 2D model to simulate the vibrations of 3D bridges and rails. Finally, the 2D vibro-acoustic model was used to calculate the sound attenuation of bridge noises and rail noises in the far field. The accuracy of the 2D method was validated by compared wilhe the results obtained by the 2.5D method. The research shows that the variation of the bridge vibration and the rail vibration is insignificant along the longitudinal axis of the track above 100 Hz. The proposed 2D method for the simulation of bridge noise and rail noise attenuation can achieve a certain accuracy above 100 Hz, and thus it can predict the A-weighted sound pressure levels in the far field.

参考文献/References:

[1] 居浩,黄晓明,虞晓锋. 交通管制因素对普通城市道路噪声的影响[J].东南大学学报(自然科学版), 2014,44(2):420-424. DOI: 10.3969/j.issn.1001-0505.2014.02. 034.
Ju Hao, Huang Xiaoming, Yu Xiaofeng. Influence of traffic regulation factors on noise in ordinary urban roads [J]. Journal of Southeast University(Natural Science Edition), 2014, 44(2): 420-424. DOI:10.3969/j.issn.1001-0505.2014.02.034. (in Chinese)
[2] 王平,唐剑,杨鹏,等. GJ-Ⅲ减振扣件轨道对轨道交通高架段环境噪声的影响分析[J].铁道标准设计, 2017,61(3):4-9. DOI:10.13238/j.issn.1004-2954. 2017.03.002.
Wang Ping, Tang Jian, Yang Peng, et al. Analysis of the influence of GJ-Ⅲ fastener vibration damping track on environment noise of metro viaduct section [J]. Railway Standard Design, 2017, 61(3): 4-9.DOI:10.13238/j. issn.1004-2954.2017.03.002. (in Chinese)
[3] 张辰辰,钱振东,张晓春. 高架地铁列车环境振动传播规律的数值模拟[J]. 东南大学学报(自然科学版),2013,43(4):863-867. DOI: 10.3969/j.issn.1001-0505. 2013.04.035.
Zhang Chenchen, Qian Zhendong, Zhang Xiaochun. Numerical simulation of environmental vibration induced by viaduct rail transit [J]. Journal of Southeast University(Natural Science Edition), 2013, 43(4): 863-867. DOI:10.3969/j.issn.1001-0505.2013.04.035. (in Chinese)
[4] 许永富,尹铁锋,冯立力,等.宁波轨道交通高架线综合降噪效果测试与分析[J]. 都市快轨交通,2016,29(5):94-98. DOI:10.3969/j.issn.1672-6073.2016.05. 019.
Xu Yongfu, Yin Tiefeng, Feng Lili, et al. Test and analysis on the noise reduction of Ningbo rail transit elevated line [J]. Urban Rapid Rail Transit, 2016, 29(5):94-98.DOI:10.3969/j.issn.1672-6073.2016.05.019. (in Chinese)
[5] 蒋伟康,张海滨,严莉. 高架轨道交通噪声的分析与控制技术研究[J]. 声学技术, 2012, 31(2):138-146. DOI:10.3969/j.issn1000-3630.2012.02.005.
Jiang Weikang, Zhang Haibin, Yan Li. Analysis and reduction techniques for noise of lifted railway transportation [J]. Technical Acoustics, 2012, 31(2): 138-146. DOI:10.3969/j.issn1000-3630.2012.02.005. (in Chinese)
[6] 李小珍,尹航,吴金峰,等.成灌快铁高架桥梁区段噪声测试[J].噪声与振动控制,2013, 33(2): 183-187. DOI:10.3969/j.issn.1006-1335.2013.02.041.
Li Xiaozhen, Yin Hang, Wu Jinfeng, et al. Testing and analysis of noise from the elevated bridges of Cheng-Guan rapid railway [J]. Noise and Vibration Control, 2013, 33(2): 183-187. DOI:10.3969/j.issn.1006-1335.2013.02.041. (in Chinese)
[7] 王帅. 基于模式预测法的城市轨道噪声影响研究[J]. 铁道标准设计,2016,60(5):152-155. DOI: 10.13238/j.issn.1004-2954.2016.05.034.
Wang Shuai. Study on the influence of urban rail noise based on model prediction method [J]. Railway Standard Design, 2016, 60(5): 152-155. DOI:10.13238/j.issn.1004-2954.2016.05.034. (in Chinese)
[8] 胡文林,胡叙洪,齐春雨,等.高速铁路桥梁声屏障插入损失五声源预测模式研究[J]. 铁道标准设计,2016,60(4):118-124. DOI:10.13238/j.issn.1004-2954.2016. 04.029.
Hu Wenlin, Hu Xuhong, Qi Chunyu, et al. Five-noise-source model for predicting insertion loss of noise barrier on high speed railway bridge [J]. Railway Standard Design, 2016, 60(4): 118-124. DOI:10.13238/j.issn.1004-2954.2016.04.029. (in Chinese)
[9] Ouelaa N, Rezaiguia A, Laulagnet B. Vibro-acoustic modelling of a railway bridge crossed by a train[J]. Applied Acoustics, 2006, 67(5): 461-475.DOI: 10.1016/j.apacoust.2005.07.005.
[10] Xie X, Wu D Y, Zhang H, et al. Low-frequency noise radiation from traffic-induced vibration of steel double-box girder bridge[J]. Journal of Vibration and Control, 2012, 18(3): 373-384. DOI: 10.1177/1077546311411060.
[11] Zhang X, Li X Z, Li X D, et al. Train-induced vibration and noise radiation of a prestressed concrete box-girder [J]. Noise Control Engineering Journal, 2013, 61(4): 425-435. DOI: 10.3397/1/3761037.
[12] Li Q, Xu Y L, Wu D J. Concrete bridge-borne low-frequency noise simulation based on train-track-bridge dynamic interaction [J]. Journal of Sound and Vibration, 2012, 331(10):2457-2470. DOI: 10.1016/j.jsv.2011.12.031.
[13] 宋晓东,吴定俊,李奇.基于无限元的2.5维方法预测轨道交通混凝土桥梁低频噪声[J].振动工程学报,2015,28(6):929-936. DOI: 10.16385/j.cnki.issn.1004-4523.2015.06.010.
Song Xiaodong, Wu Dingjun, Li Qi. A 2.5-dimensional infinite element based method for the prediction of structure-borne low-frequency noise from concrete rail transit bridges [J]. Journal of Vibration Engineering, 2015, 28(6): 929-936. DOI:10.16385/j.cnki.issn.1004-4523.2015.06.010. (in Chinese)
[14] Song X D, Li Q, Wu D J. Investigation of rail noise and bridge noise using a combined 3D dynamic model and 2.5D acoustic model [J]. Applied Acoustics, 2016, 109:5-17. DOI: 10.1016/j.apacoust.2016.02.006.
[15] 环境保护部. HJ 2.4—2009环境影响评价技术导则:双声环境[S]. 北京:中国环境科学出版社,2009.
[16] 环境保护部. HJ 453—2008环境影响评价技术导则:双城市轨道交通[S]. 北京:中国环境科学出版社,2009.
[17] Li Q, Li W Q, Wu D J, et al. A combined power flow and infinite element approach to the simulation of medium-frequency noise radiated from bridges and rails [J]. Journal of Sound and Vibration, 2016, 365:134-156. DOI: 10.1016/j.jsv.2015.11.041.
[18] Nilsson C M, Jones C J C, Thompson D J, et al. A waveguide finite element and boundary element approach to calculating the sound radiated by railway and tram rails [J]. Journal of Sound and Vibration, 2009, 321(3/4/5): 813-836. DOI: 10.1016/j.jsv.2008.10.027.
[19] Thompson D. Railway noise and vibration: Mechanism modeling and means of control[M]. Oxford, UK: Elsevier Limited, 2009.
[20] International Organization for Standardization. ISO3095:2005 railway applications-acoustics-measurement of noise emitted by rail bound vehicles[S]. London, UK: British Standards Institution, 2006.
[21] Dai J, Lai J C S. Experimental measurement of surface mobility over a rectangular contact area subject to a uniform conphase velocity excitation [J]. Applied Acoustics, 2001, 62(7): 867-874. DOI: 10.1016/s0003-682x(00)00076-1.

备注/Memo

备注/Memo:
收稿日期: 2017-04-28.
作者简介: 宋晓东(1987—),男,博士,讲师, xdsong@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51608116)、江苏省自然科学基金资助项目(BK20160681).
引用本文: 宋晓东,李奇,吴定俊.一种轨道交通高架线路噪声衰减规律的预测方法[J].东南大学学报(自然科学版),2017,47(5):1055-1061. DOI:10.3969/j.issn.1001-0505.2017.05.034.
更新日期/Last Update: 2017-09-20