[1]宋亮亮,邓勇亮,袁竞峰,等.基于复杂网络理论的地铁运行干扰源分析[J].东南大学学报(自然科学版),2017,47(5):1069-1073.[doi:10.3969/j.issn.1001-0505.2017.05.036]
 Song Liangliang,Deng Yongliang,Yuan Jingfeng,et al.Analysis of metro operation disturbances based on complex network theory[J].Journal of Southeast University (Natural Science Edition),2017,47(5):1069-1073.[doi:10.3969/j.issn.1001-0505.2017.05.036]
点击复制

基于复杂网络理论的地铁运行干扰源分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第5期
页码:
1069-1073
栏目:
安全科学
出版日期:
2017-09-20

文章信息/Info

Title:
Analysis of metro operation disturbances based on complex network theory
作者:
宋亮亮1邓勇亮2袁竞峰1李启明1
1东南大学土木工程学院, 南京 210096; 2中国矿业大学力学与土木工程学院, 徐州 221116
Author(s):
Song Liangliang1 Deng Yongliang2 Yuan Jingfeng1 Li Qiming1
1School of Civil Engineering, Southeast University, Nanjing 210096, China
2School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
关键词:
地铁运行安全 干扰源网络 复杂网络理论 拓扑特性 目标免疫理论
Keywords:
metro operation safety disturbance network complex network theory(CNT) topological property targeted immunization theory
分类号:
X951
DOI:
10.3969/j.issn.1001-0505.2017.05.036
摘要:
为了提升地铁系统的运行安全水平,以地铁运营事故和风险清单为基础,识别出26类地铁运行干扰源,通过事件链明确干扰源间的联系,构建地铁运行干扰源网络(MODN).然后,运用复杂网络理论(CNT),剖析地铁系统运行干扰源的特性,对MODN的拓扑特征进行研究.最后,基于目标免疫理论提出4种提升系统安全性的免疫策略,并对其免疫效果进行评估.研究结果表明:基于CNT对地铁运行干扰源的特性进行分析是可行的;MODN具有小世界特性和无标度特性,干扰源容易传播和扩散;地铁干扰源的免疫策略中选择性免疫策略的效果优于随机性免疫策略,而在选择性免疫策略中基于高介数和高度值的免疫策略效果最佳.地铁系统运行中应重点防范具有介数和度值高的干扰源.
Abstract:
To enhance the safety level of metro operation, 26 disruptive events are identified through the metro accidents and risk checklists. The interrelations among the disruptive events are clarified by the employing event chain, and the metro operation disturbance network(MODN)is established. Then, the complex network theory(CNT)is utilized to explore the characteristics of metro operation disturbances by revealing the topological properties of the MODN.Finally, four immunization strategies are put forward to enhance the system safety based on the target immunization theory, and the effects of these strategies are evaluated. The results indicate that it is feasible to study the nature of metro disturbances by the CNT. The MODN is a complex network with small-world property and scale-free property, in which the disturbances can spread easily. With regard to the immunization strategies, the immune effect of the selective immunization strategy is better than that of the random immunization strategy. Concerning the selective immunization strategies, the immune effect of the strategy based on degree and between centrality is better. The interference sources with high betweenness and high degree of interference should be emphasized during metro operation.

参考文献/References:

[1] 吴奇兵, 陈峰, 黄垚, 等. 北京市机动车拥堵成本测算与分析[J]. 交通运输系统工程与信息, 2011, 11(1): 168-172. DOI:10.3969/j.issn.1009-6744.2011.01.029.
Wu Qibing, Chen Feng, Huang Yao, et al. Calculation and analysis of traffic congestion cost in Beijing[J]. Journal of Transportation Systems Engineering and Information Technology, 2011, 11(1): 168-172. DOI:10.3969/j.issn.1009-6744.2011.01.029. (in Chinese)
[2] Mao L Z, Zhu H G, Duan L R. The social cost of traffic congestion and countermeasures in Beijing [C]//Ninth Asia Pacific Transportation Development Conference. Chongqing, China, 2010: 68-76.DOI:10.1061/9780784412299.0010.
[3] 陆莹, 李启明, 周志鹏. 基于模糊贝叶斯网络的地铁运营安全风险预测[J]. 东南大学学报(自然科学版), 2010, 40(5): 1110-1114. DOI:10.3969/j.issn.1001-0505.2010.05.043.
Lu Ying, Li Qiming, Zhou Zhipeng. Safety risk prediction of subway operation based on fuzzy bayesian network[J]. Journal of Southeast University(Natural Science Edition), 2010, 40(5): 1110-1114. DOI:10.3969/j.issn.1001-0505.2010.05.043. (in Chinese)
[4] Kyriakidis M, Hirsch R, Majumdar A. Metro railway safety: An analysis of accident precursors[J]. Safety Science, 2012, 50(7): 1535-1548. DOI:10.1016/j.ssci.2012.03.004.
[5] Wan X, Li Q, Yuan J, et al. Metro passenger behaviors and their relations to metro incident involvement[J]. Accid Anal Prev, 2015, 82: 90-100. DOI:10.1016/j.aap.2015.05.015.
[6] Deng Y, Li Q, Lu Y. A research on subway physical vulnerability based on network theory and FMECA[J]. Safety Science, 2015, 80: 127-134. DOI:10.1016/j.ssci.2015.07.019.
[7] 宋亮亮, 李启明, 陆莹, 等. 城市地铁系统脆弱性影响因素研究[J]. 中国安全科学学报, 2016, 26(5): 64-69. DOI:10.16265/j.cnki.issn1003-3033.2016.05.012.
Song Liangliang, Li Qiming, Lu Ying, et al. Research on factors affecting vulnerability of subway system[J]. China Safety Science Journal, 2016, 26(5): 64-69. DOI:10.16265/j.cnki.issn1003-3033.2016.05.012. (in Chinese)
[8] Adduci R, Hathaway W, Meadow L. Hazard analysis guidelines for transit projects [R]. Washington DC, USA: US DOT Federal Transit Administration, 2000.
[9] Rail Safety and Standards Board. Engineering safety management(the yellow book)[R]. London: RSSB, 2007.
[10] 赵金龙, 黄弘, 李聪, 等. 基于事件链的罐区定量风险评估[J]. 化工学报, 2016, 67(7): 3084-3090. DOI:10.11949/j.issn.0438-1157.20151908.
Zhao Jinlong, Huang Hong, Li Cong, et al. Quantitative risk assessment in storage tank areas based on event-chains[J]. Journal of Chemical Industry and Engineering, 2016, 67(7): 3084-3090. DOI:10.11949/j.issn.0438-1157.20151908. (in Chinese)
[11] Li Q, Song L, List G F, et al. A new approach to understand metro operation safety by exploring metro operation hazard network(MOHN)[J]. Safety Science, 2017, 93: 50-61. DOI:10.1016/j.ssci.2016.10.010.
[12] Kossinets G, Watts D J. Empirical analysis of an evolving social network[J]. Science, 2006, 311(5757): 88-90. DOI:10.1126/science.1116869.
[13] Watts D J, Strogatz S H. Collective dynamics of ’small-world’ networks[J]. Nature, 1998, 393(6684): 440-442. DOI:10.1038/30918.
[14] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512. DOI:10.1126/science.286.5439.509.

备注/Memo

备注/Memo:
收稿日期: 2017-03-14.
作者简介: 宋亮亮(1988—),男,博士生;李启明(联系人),男,博士,教授,博士生导师,njlqming@163.com.
基金项目: 国家自然科学基金资助项目(51578144)、教育部人文社会科学研究青年基金资助项目(17YJCZ035).
引用本文: 宋亮亮,邓勇亮,袁竞峰,等.基于复杂网络理论的地铁运行干扰源分析[J].东南大学学报(自然科学版),2017,47(5):1069-1073. DOI:10.3969/j.issn.1001-0505.2017.05.036.
更新日期/Last Update: 2017-09-20