# [1]刘勇,王开,刘航,等.基于总体最小二乘改进的SDFT三相交流电频率估计算法[J].东南大学学报(自然科学版),2017,47(6):1129-1134.[doi:10.3969/j.issn.1001-0505.2017.06.008] 　Liu Yong,Wang Kai,Liu Hang,et al.Improved SDFT algorithm based on total least squares for frequency estimation in three-phase power system[J].Journal of Southeast University (Natural Science Edition),2017,47(6):1129-1134.[doi:10.3969/j.issn.1001-0505.2017.06.008] 点击复制 基于总体最小二乘改进的SDFT三相交流电频率估计算法() 分享到： var jiathis_config = { data_track_clickback: true };

47

2017年第6期

1129-1134

2017-11-20

## 文章信息/Info

Title:
Improved SDFT algorithm based on total least squares for frequency estimation in three-phase power system

Author(s):
School of Information Science and Engineering, Southeast University, Nanjing 210096, China

Keywords:

TM935.1
DOI:
10.3969/j.issn.1001-0505.2017.06.008

Abstract:
In the smart discrete Fourier transform(SDFT)algorithm, the underlying relationship among the three consecutive fundamental components of the voltages does not hold when the three-phase power system is contaminated by noises, harmonics, or encountered with sudden interrupts. To solve this problem, a total least squares SDFT(TLS-SDFT)algorithm is put forward. In the proposed algorithm,the original three point relation formula in the SDFT algorithm is extended based on the multiple DFT fundamental observations obtained by sliding windows.A perturbation matrix is introduced. The coefficient matrix is singular value decomposed to minimize the Frobenious norm of the perturbation matrix, and then the estimated frequency is improved. Due to the special structure of the coefficient matrix, the additional complexity of the proposed algorithm is a linear function with the length of the sliding window. The simulation results show that the estimation bias and the mean square error of the proposed algorithm are much smaller than those of the original SDFT algorithm under the interference of Gauss white noise. The frequency tracking accuracy of the proposed algorithm is obviously improved under the conditions of high harmonic interference, signal parameter mutation and real substation measurement.

## 参考文献/References:

[1] Yang J Z, Liu C W. A precise calculation of power system frequency and phasor [J]. IEEE Transactions on Power Delivery, 2000, 15(2): 494-499. DOI: 10.1109/61.852974.
[2] Karimi-Ghartemani M, Ooi B T, Bakhshai A. Application of enhanced phase-locked loop system to the computation of synchrophasors [J]. IEEE Transactions on Power Delivery, 2011, 26(1): 22-32.DOI:10.1109/tpwrd.2010.2064341.
[3] Mojiri M, Karimi-Ghartemani M, Bakhshai A. Estimation of power system frequency using an adaptive notch filter [J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(6): 2470-2477. DOI:10.1109/tim.2007.908631.
[4] Abdollahi A, Matinfar F. Frequency estimation: A least-squares new approach [J]. IEEE Transactions on Power Delivery, 2011, 26(2): 790-798. DOI:10.1109/tpwrd.2010.2090177.
[5] Xia Y, Douglas S C, Mandic D P. Adaptive frequency estimation in smart grid applications: Exploiting noncircularity and widely linear adaptive estimators [J]. IEEE Signal Processing Magazine, 2012, 29(5): 44-54. DOI:10.1109/msp.2012.2183689.
[6] Routray A, Pradhan A K, Rao K P. A novel Kalman filter for frequency estimation of distorted signals in power systems[J]. IEEE Transactions on Instrumentation and Measurement, 2002, 51(3): 469-479. DOI:10.1109/tim.2002.1017717.
[7] Ren J, Kezunovic M. A hybrid method for power system frequency estimation [J]. IEEE Transactions on Power Delivery, 2012, 27(3): 1252-1259. DOI:10.1109/tpwrd.2012.2196770.
[8] Dash P K, Hasan S. A fast recursive algorithm for the estimation of frequency, amplitude, and phase of noisy sinusoid [J]. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4847-4856. DOI:10.1109/tie.2011.2119450.
[9] Wen H, Guo S, Teng Z, et al. Frequency estimation of distorted and noisy signals in power systems by FFT-based approach [J]. IEEE Transactions on Power Systems, 2014, 29(2): 765-774. DOI:10.1109/tpwrs.2013.2283273.
[10] Yang J Z, Liu C W. A precise calculation of power system frequency [J]. IEEE Transactions on Power Delivery, 2001, 16(3): 361-366. DOI:10.1109/61.924811.
[11] Xia Y, He Y, Wang K, et al. A complex least squares enhanced smart DFT technique for power system frequency estimation [J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1270-1278. DOI:10.1109/tpwrd.2015.2418778.
[12] Anderson E, Bai Z, Bischof C, et al. LAPACK users’ guide[M]. Philadelphia, PA,USA:SIAM, 1999: 20-25.
[13] Martin K E. Synchrophasor standards development-IEEE C37. 118 & IEC 61850 [C]//2011 44th Hawaii International Conference on System Sciences(HICSS). IEEE, Hawaii, USA, 2011: 1-8. DOI:10.1109/hicss.2011.393.