[1]谭永山,余红发,刘倩倩.高性能玻镁外挂墙板的耐久性及其微观机理[J].东南大学学报(自然科学版),2017,47(6):1201-1207.[doi:10.3969/j.issn.1001-0505.2017.06.019]
 Tan Yongshan,Yu Hongfa,Liu Qianqian.Durability and microscopic mechanism of high performance glass fiber reinforce magnesium oxychloride cement exterior cladding walls[J].Journal of Southeast University (Natural Science Edition),2017,47(6):1201-1207.[doi:10.3969/j.issn.1001-0505.2017.06.019]
点击复制

高性能玻镁外挂墙板的耐久性及其微观机理()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第6期
页码:
1201-1207
栏目:
交通运输工程
出版日期:
2017-11-20

文章信息/Info

Title:
Durability and microscopic mechanism of high performance glass fiber reinforce magnesium oxychloride cement exterior cladding walls
作者:
谭永山1余红发1刘倩倩2
1南京航空航天大学土木工程系, 南京 210016; 2原构咨询设计有限公司, 上海 200232
Author(s):
Tan Yongshan1 Yu Hongfa1 Liu Qianqian2
1Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2ACO Architects and Consultants Co., Ltd., Shanghai 200232, China
关键词:
玻镁外墙挂板(GRMCS) 喷淋 碳化 热辐射 微观结构
Keywords:
glass fiber reinforce magnesium oxychloride cement exterior cladding wall(GRMCS) spray carbonation thermal radiation microstructure
分类号:
U214
DOI:
10.3969/j.issn.1001-0505.2017.06.019
摘要:
通过喷淋-热辐射和碳化-喷淋试验,研究了环境因素对普通和高性能玻镁外挂墙板(GRMCS)弯曲性能的影响,并采用X射线衍射和扫描电镜分析了环境因素影响下GRMCS的劣化机理.结果表明,GRMCS在喷淋-热辐射循环侵蚀条件下的抗弯强度保留率均在80%以上,而在碳化-喷淋循环侵蚀条件下,普通GRMCS的抗弯强度保留率仅为48.88%.在喷淋-热辐射循环侵蚀条件下,普通GRMCS中Mg(OH)2含量明显比高性能GRMCS中Mg(OH)2含量高,且其微观结构酥松;在碳化-喷淋循环侵蚀条件下,普通GRMCS的主要强度相5Mg(OH)2·MgCl2·8H2O(5·1·8)相基本消失,最终产物为4MgCO3·Mg(OH)2·4H2O(4·1·4)相和MgCO3,而高性能GRMCS的主要物相仍为5·1·8相.高性能GRMCS纤维表面光滑,而普通GRMCS则出现了较多的腐蚀微孔,说明高性能GRMCS较普通GRMCS具有更好的耐久性.
Abstract:
The effects of the environmental factors on the bending performance of common glass fiber reinforce magnesium oxychloride cement exterior cladding wall(GRMCS)and high performance GRMCS were studied by using the spray-heat radiation and carbonization-spray tests.The degradation mechanism of the GRMCS under the influence of the environmental factors was analyzed by using X-ray diffraction and scanning electron microscopy. The results show that the flexural strength retention rate of the GRMCS under spray-heat radiation is above 80%, while that of the common GRMCS specimen in the carbonization-spray experiments is only 48.88%. After the spray-heat radiation cyclic erosion, the content of Mg(OH)2 in the common GRMCS specimen is significantly higher than that in the high performance GRMCS, and loose structures are observed in the common GRMCS. After the carbonation-spray cyclic erosion, the 5Mg(OH)2·MgCl2·8H2O(5·1·8)phase, the major strength phase in the common GRMCS, disappears, and the final hydration product are 4MgCO3·Mg(OH)2·4H2O(4·1·4)phase and MgCO3, while the main phase in the high performance GRMCS is still 5·1·8 phase. The surface of the high performance GRMCS is smooth, while many corrosion pits are observed on the surface of the common GRMCS, indicating that the high performance GRMCS outperforms the common GRMCS in durability.

参考文献/References:

[1] 马明明, 张彦. 玻璃纤维及其复合材料的应用进展[J]. 化工新型材料, 2016, 44(2): 38-40.
  Ma Mingming, Zhang Yan. Progress in the application of glass fiber and its composites materials[J]. New Chemical Materials, 2016, 44(2): 38-40.(in Chinese)
[2] Abeysinghe C M, Thambiratnam D P, Perera N J. Flexural performance of an innovative hybrid composite floor plate system comprising glass-fibre reinforced cement, polyurethane and steel laminate[J]. Composite Structures, 2013, 95: 179-190. DOI: 10.1016/j.compstruct.2012.06.019.
[3] 刘志成, 崔琪, 李清海. 玻璃纤维增强水泥(GRC)研究与发展综述[J]. 中国建材科技, 2015, 24(3): 41-44. DOI: 10.3969/j.issn.1003-8965.2015.03.021.
Liu Zhicheng, Cui Qi, Li Qinghai. Research and development review on glass fiber reinforced cement[J]. China Building Materials Science & Technology, 2015, 24(3): 41-44. DOI:10.3969/j.issn.1003-8965.2015.03.021. (in Chinese)
[4] Sorel S. On a new magnesium cement[J]. CR Acad Sci, 1867, 65: 102-104.
[5] Li Y, Yu H, Zheng L, et al. Compressive strength of fly ash magnesium oxychloride cement containing granite wastes[J]. Construction and Building Materials, 2013, 38: 1-7. DOI: 10.1016/j.conbuildmat.2012.06.016.
[6] Chau C K, Chan J, Li Z. Influences of fly ash on magnesium oxychloride mortar[J]. Cement and Concrete Composites, 2009, 31(4): 250-254. DOI: 10.1016/j.cemconcomp.2009.02.011.
[7] Li Z, Chau C K. Influence of molar ratios on properties of magnesium oxychloride cement[J]. Cement and Concrete Research, 2007, 37(6): 866-870. DOI: 10.1016/j.cemconres.2007.03.015.
[8] Li Y, Li Z, Pei H, et al. The influence of FeSO4 and KH2PO4 on the performance of magnesium oxychloride cement[J]. Construction and Building Materials, 2016, 102: 233-238. DOI: 10.1016/j.conbuildmat.2015.10.186.
[9] 董金美, 余红发, 刘倩倩, 等. 玻镁外墙挂板的抗水性、水化产物和微观结构[J]. 硅酸盐通报, 2011, 30(5): 1005-1009.
  Dong Jinmei, Yu Hongfa, Liu Qianqian, et al. Water resistance, hydration product and microstructure of glass fiber reinforced magnesium oxychloride cement exterior wall cladding[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(5): 1005-1009.(in Chinese)
[10] 余红发, 董金美, 刘倩倩, 等. 高性能玻璃纤维增强氯氧镁水泥的加速寿命试验与微观机理[J]. 硅酸盐通报, 2012, 31(1): 111-116.
  Yu Hongfa, Dong Jinmei, Liu Qianqian, et al. Acceleration life test and microscopic mechanism of high performance glass fiber reinforced magnesium oxychloride cement[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(1): 111-116.(in Chinese)
[11] 谭永山, 余红发, 董金美, 等. 玻璃纤维增强氯氧镁水泥的抗冻性及其机理[J]. 硅酸盐通报, 2014, 33(3): 459-464.
  Tan Yongshan, Yu Hongfa, Dong Jinmei, et al. Frost resistance and mechanism of glass fiber reinforce magnesium oxychloride cement [J]. Bulletin of the Chinese Ceramic Society, 2014, 33(3): 459-464.(in Chinese)
[12] Bilinski H, Matkovic B, Ma?uranic C, et al. The formation of magnesium oxychloride phases in the systems MgO-MgCl2-H2O and NaOH-MgCl2-H2O[J]. Journal of the American Ceramic Society, 2006, 67(4): 266-269. DOI: 10.1111/j.1151-2916.1984.tb18844.x.
[13] de Castellar M D, Lorente J C, Traveria A, et al. Cracks in Sorel’s cement polishing bricks as a result of magnesium oxychloride carbonatation[J]. Cement and Concrete Research, 1996, 26(8): 1199-1202. DOI: 10.1016/0008-8846(96)00102-0.
[14] Matkovlc B, Popovic S, Rogic V, et al. Reaction products in magnesium oxychloride cement pastes system MgO-MgCl2-H2O[J]. Journal of the American Ceramic Society, 1977, 60(11): 504-507. DOI: 10.1111/j.1151-2916.1977.tb14093.x.
[15] 李颖, 余红发, 董金美, 等. 氯氧镁水泥的水化产物、相转变规律和抗水性评价方法的研究进展[J]. 硅酸盐学报, 2013, 41(11): 1465-1473. DOI: 10.7521/j.issn.0454-5648.2013.11.02.
Li Ying, Yu Hongfa, Dong Jinmei, et al. Research development on hydration product, phase transformation and water resistance evaluation method of magnesium oxychloride cement[J]. Journal of the Chinese Ceramic Society, 2013, 41(11): 1465-1473. DOI:10.7521/j.issn.0454-5648.2013.11.02. (in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2017-03-04.
作者简介: 谭永山(1985—),男,博士生;余红发(联系人),男,博士,教授,博士生导师,yuhongfa@nuaa.edu.cn.
基金项目: 国家自然科学基金资助项目(21276264,U1407104,U1507120)、中国科学院“百人计划”资助项目.
引用本文: 谭永山,余红发,刘倩倩.高性能玻镁外挂墙板的耐久性及其微观机理[J].东南大学学报(自然科学版),2017,47(6):1201-1207. DOI:10.3969/j.issn.1001-0505.2017.06.019.
更新日期/Last Update: 2017-11-20