[1]胡军红,过秀成,陶涛,等.基于k最短路径的现代有轨电车线网优化[J].东南大学学报(自然科学版),2017,47(6):1274-1278.[doi:10.3969/j.issn.1001-0505.2017.06.030]
 Hu Junhong,Guo Xiucheng,Tao Tao,et al.Optimization of modern tram network based on k-shortest path algorithm[J].Journal of Southeast University (Natural Science Edition),2017,47(6):1274-1278.[doi:10.3969/j.issn.1001-0505.2017.06.030]
点击复制

基于k最短路径的现代有轨电车线网优化()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
47
期数:
2017年第6期
页码:
1274-1278
栏目:
交通运输工程
出版日期:
2017-11-20

文章信息/Info

Title:
Optimization of modern tram network based on k-shortest path algorithm
作者:
胡军红12过秀成1陶涛1胡婷婷1
1东南大学交通学院, 南京 210096; 2南京工业大学交通运输工程学院, 南京 210009
Author(s):
Hu Junhong12 Guo Xiucheng1 Tao Tao1 Hu Tingting1
1School of Transportation, Southeast University, Nanjing 210096, China
2 College of Transportation Science and Technology, Nanjing Technology University, Nanjing 210009, China
关键词:
现代有轨电车 k最短路径算法 联合熵权 线网优化
Keywords:
modern tram k-shortest path algorithm joint entropy weight network optimization
分类号:
U491.13
DOI:
10.3969/j.issn.1001-0505.2017.06.030
摘要:
为科学合理地进行现代有轨电车线网的优化与改进,基于现代有轨电车线网优化的约束条件,引入k最短路径算法进行线网优化.首先运用道路空间资源要素和线路重复系数这2个约束条件实现对初始网络图中有效边的筛选,形成备选线路集合,其次将非直线系数和节点综合重要度这2个约束条件组成联合熵权,将该联合熵权作为现代有轨电车最优路径的判定参数,从而构建满足多约束条件下的现代有轨电车线网优化方法.最后,以南京河西新城现代有轨电车线网优化为例,验证了该方法的有效性,表明k最短路径算法是适用于现代有轨电车线网规划的有效方法,该方法可为现代有轨电车线网规划提供参考.
Abstract:
In order to carry out the optimization and improvement of the modern tram network scientifically and rationally, the k-shortest path algorithm is introduced based on the constraint conditions of modern tram network optimization. Road space resource factors and path duplication factors are used to select the proper edges in the initial network and a set of alternative paths is formed. The non-linear coefficient and node comprehensive importance degree are combined into joint entropy weight, and the joint entropy weight is used as the judgment parameter of the optimal path of modern tram. Then, the modern optimization method for tram line is constructed. Finally, the effectiveness of the method is verified through the practical example of Nanjing Hexi new urban district modern tram network optimization. It is shown that the k-shortest path algorithm is an effective method for modern tram network planning. This method can provide a reference for urban tram network planning.

参考文献/References:

[1] 白轶多,胡鹏, 夏兰芳, 等.关于k次短路径问题的分析与求解[J].武汉大学学报(信息科学版), 2009, 34(4):492-494.
  Bai Yiduo, Hu Peng, Xia Lanfang, et. A kth-shortest path algorithm based on k-1 shortest paths[J].Geomatics and Information Science of Wuhan University, 2009, 34(4):492-494.(in Chinese)
[2] 段宗涛, Wang Weixing, 康军, 等. 面向城市交通网络的k最短路径集合算法[J]. 交通运输系统工程与信息, 2014, 14(3): 194-200. DOI:10.3969/j.issn.1009-6744.2014.03.030.
Duan Zongtao, Wang Weixing, Kang Jun, et al. A k-th shortest path set algorithm for urban traffic network[J].Journal of Transportation Systems Engineering and Information Technology, 2014, 14(3): 194-200. DOI:10.3969/j.issn.1009-6744.2014.03.030. (in Chinese)
[3] 徐涛, 丁晓璐, 李建伏. 国际航线网络联程路径搜索的KMCSP问题研究[J]. 西南交通大学学报, 2014, 49(1): 153-159. DOI:10.3969/j.issn.0258-2724.2014.01.024.
Xu Tao, Ding Xiaolu, Li Jianfu. K-multiple constrained shortest paths problem for connecting path search in international flight path network[J]. Journal of Southwest Jiaotong University, 2014, 49(1): 153-159. DOI:10.3969/j.issn.0258-2724.2014.01.024. (in Chinese)
[4] 王莉, 李文权. 公共交通系统最佳路径算法[J]. 东南大学学报(自然科学版), 2004, 34(2): 264-267. DOI:10.3321/j.issn:1001-0505.2004.02.029.
Wang Li, Li Wenquan. Best-routing algorithm for public transportation systems[J]. Journal of Southeast University(Natural Science Edition), 2004, 34(2): 264-267. DOI:10.3321/j.issn:1001-0505.2004.02.029. (in Chinese)
[5] 中国公路学会《交通工程手册》编委会.交通工程手册[M]. 北京:人民交通出版社,1998:234.
[6] 中华人民共和国建设部.GB 50220—1995城市道路交通规划设计规范[S].北京:中国计划出版社,1995.
[7] 郝光, 张殿业, 冯勋省. 多目标最短路径模型及算法[J]. 西南交通大学学报, 2007, 42(5): 641-646. DOI:10.3969/j.issn.0258-2724.2007.05.024.
Hao Guang, Zhang Dianye, Feng Xunsheng. Model and algorithm for shortest path of multiple objectives[J].Journal of Southwest Jiaotong University, 2007, 42(5): 641-646. DOI:10.3969/j.issn.0258-2724.2007.05.024. (in Chinese)
[8] Yen J Y. Finding the K shortest loopless paths in a network[J]. Management Science, 1971, 17(11): 712-716. DOI:10.1287/mnsc.17.11.712.
[9] Androutsopoulos K N, Zografos K G. Solving the-shortest path problem with time windows in a time varying network[J]. Operations Research Letters, 2008, 36(6): 692-695. DOI:10.1016/j.orl.2008.07.003.
[10] Wang Z P,Li G,Ren J W.A new search algorithm for transmission section based on k shortest paths[J].Transactions of China Electrotechnical Society, 2012,27(4):193-201.
[11] Gao Z Y, Zhao X M, Huang H J, et al. Research on problems related to complex networks and urban traffic systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2006, 6(3):41-47.
[12] 马超群,王玉萍.基于客流效益最大化的轨道交通线网优化方法[J].长安大学学报(自然科学版),2010,30(1):76-79.
  Ma Chaoqun, Wang Yuping. Method to optimize urban rail transit network based on maximizing the passenger flow [J].Journal of Chang’an University(Natural Science Edition),2010, 30(1):76-79.

备注/Memo

备注/Memo:
收稿日期: 2017-05-06.
作者简介: 胡军红(1974—),女,博士生,副教授;过秀成(联系人),男,博士,教授,博士生导师,seuguo@163.com.
基金项目: 江苏省交通运输科技资助项目(2015Y17).
引用本文: 胡军红,过秀成,陶涛,等.基于k最短路径的现代有轨电车线网优化[J].东南大学学报(自然科学版),2017,47(6):1274-1278. DOI:10.3969/j.issn.1001-0505.2017.06.030.
更新日期/Last Update: 2017-11-20