[1]高健,钟文琪,徐惠斌,等.湿颗粒的振动流化特性实验研究[J].东南大学学报(自然科学版),2018,48(1):71-77.[doi:10.3969/j.issn.1001-0505.2018.01.011]
 Gao Jian,Zhong Wenqi,Xu Huibin,et al.Experimental study on vibrating fluidization characteristics of wet particles[J].Journal of Southeast University (Natural Science Edition),2018,48(1):71-77.[doi:10.3969/j.issn.1001-0505.2018.01.011]
点击复制

湿颗粒的振动流化特性实验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第1期
页码:
71-77
栏目:
数学、物理学、力学
出版日期:
2018-01-20

文章信息/Info

Title:
Experimental study on vibrating fluidization characteristics of wet particles
作者:
高健12钟文琪12徐惠斌3袁竹林12
1东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 2东南大学能源与环境学院, 南京 210096; 3江苏大学能源与动力工程学院, 镇江 212013
Author(s):
Gao Jian12 Zhong Wenqi12 Xu Huibin3 Yuan Zhulin12
1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
2School of Energy and Environment, Southeast University, Nanjing 210096, China
3School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
关键词:
湿颗粒 振动流化床 床层压降 最小流化速度
Keywords:
wet particles vibrating fluidized bed bed pressure drop minimum fluidization velocity
分类号:
O359
DOI:
10.3969/j.issn.1001-0505.2018.01.011
摘要:
在床体尺寸为140 mm×70 mm×600 mm的振动流化床中开展了湿颗粒振动流化特性实验,研究了振动强度Γ(0~1.2)、含液量W(0~6.8%)、粒径dp(1.0~2.6 mm)对D类湿颗粒振动流化特性(流型、床层压降、最小流化速度)规律的影响.结果表明:湿颗粒振动流化床可以显著改善床层内的沟流现象,使流化更稳定.降速过程中,固定床阶段湿颗粒振动床床层压降ΔP明显大于湿颗粒普通流化床压降,而在第2流化阶段两者压降相近;同时,湿颗粒振动流化床压降随含液量的增加先降低后增加.在湿颗粒振动床中,随着振动强度的增大,最小流化速度减小;随着含液量上升,最小流化速度先增加后下降;随着颗粒粒径的增大,最小流化速度增加.最后得出了D类湿颗粒振动流化床最小流化速度的计算关联式.
Abstract:
Experimental studies on vibrating fluidization characteristics of wet particles are carried out in a vibrating fluidized bed with a bed(140 mm×70 mm×600 mm). The effects of vibration intensity Γ(0 to 1.2), liquid content W(0 to 6.8%)and particle size dp(1.0 to 2.6 mm)on the fluidization characteristics were studied, including flow pattern, pressure drop and minimum fluidization velocity. The study results show that the vibrating fluidized bed of wet particles can improve the channeling of the wet particle fluidization and make the fluidizations more stable. During the deceleration process, the pressure drop of wet particles in the vibrating fluidized bed is observably lager than that of the ordinary fluidized bed at the fixed bed stage. However, at the second fluidization stage, pressure drops of the two fluidized beds were similar. Meanwhile, the pressure drop in the wet particle vibrating fluidized bed decreases firstly and then increases with the increase of the liquid content. In the wet particle vibrating fluidized bed, the minimum fluidization velocity decreases with the increase of the vibration intensity, increases firstly and then decreases with the increase of the liquid content, increases with the increase of the particle size. The calculation formula of the minimum fluidization velocity of Geldart-D wet particles in vibrating fluidized beds is obtained.

参考文献/References:

[1] Narvaez I, Orio A, Aznar M P, et al. Biomass gasification with air in an atmosphere bubbling fluidized bed[J]. Ind Eng Chem, 1996, 35: 2110-2120.
[2] Mikami T, Kamiya H, Horio M. Numerical simulation of cohesive powder behavior in a fluidized bed[J]. Chemical Engineering Science, 1998, 53(10): 1927-1940. DOI:10.1016/s0009-2509(97)00325-4.
[3] Clarke K L, Pugsley T, Hill G A. Fluidization of moist sawdust in binary particle systems in a gas-solid fluidized bed[J]. Chemical Engineering Science, 2005, 60(24): 6909-6918. DOI:10.1016/j.ces.2005.06.004.
[4] Weber S, Briens C, Berruti F, et al. Agglomerate stability in fluidized beds of glass beads and silica sand[J]. Powder Technology, 2006, 165(3): 115-127. DOI:10.1016/j.powtec.2006.03.006.
[5] Xu H B, Zhong W, Jin B C, et al. Flow pattern and transition in gas-liquid-solid three phase spouted bed[J]. Powder Technology, 2014, 267: 18-25. DOI:10.1016/j.powtec.2014.07.010.
[6] Xu H B, Zhong W Q, Yu A B, et al. Spouting characteristics of wet particles in a conical-cylindrical spoutedbed[J]. Industrial & Engineering Chemistry Research, 2015, 54(40): 9894-9902. DOI:10.1021/acs.iecr.5b02742.
[7] 徐惠斌, 钟文琪, Yu Aibing. 湿颗粒喷动床颗粒聚团特征的实验研究[J]. 工程热物理学报, 2017,38(1): 124-128.
  Xu Huibin, Zhong Wenqi, Yu Aibing. Experimental study on the agglomerate characteristics of particles in the wet spouted bed [J]. Journal of Engineering Thermophysics, 2017,38(1): 127-128.(in Chinese)
[8] 徐惠斌, 钟文琪, Yu Aibing, 等. 湿颗粒流化床流动特性研究[J]. 工程热物理学报,2017,38(6):1257-1262
  Xu Huibin, Zhong Wenqi, Yu Aibing, et al. Experimental study on the hydrodynamic characteristics of the fluidized bed with wet particles [J]. Journal of Engineering Thermophysics, 2017, 38(6): 1257-1262.(in Chinese)
[9] Mawatari Y, Koide T, Tatemoto Y, et al. Effect of particle diameter on fluidization under vibration[J]. Powder Technology, 2002, 123(1): 69-74. DOI:10.1016/s0032-5910(01)00432-6.
[10] Mawatari Y, Tatemoto Y, Noda K. Prediction of minimum fluidization velocity for vibrated fluidized bed[J]. Powder Technology, 2003, 131(1): 66-70. DOI:10.1016/s0032-5910(02)00323-6.
[11] Cano-Pleite E, Hernández-Jiménez F, de Vega M, et al. Experimental study on the motion of isolated bubbles in a vertically vibrated fluidized bed[J]. Chemical Engineering Journal, 2014, 255: 114-125. DOI:10.1016/j.cej.2014.06.016.
[12] Cano-Pleite E, Hernández-Jiménez F, Acosta-Iborra A. Compressible-gas two-fluid modeling of isolated bubbles in a vertically vibrated fluidized bed and comparison with experiments[J]. Chemical Engineering Journal, 2015, 271: 287-299. DOI:10.1016/j.cej.2015.02.096.
[13] Liang X Z, Duan H, Zhou T, et al. Fluidization behavior of binary mixtures of nanoparticles in vibro-fluidized bed[J]. Advanced Powder Technology, 2014, 25(1): 236-243. DOI:10.1016/j.apt.2013.04.005.
[14] Liang X H, Zhou Y M, Zou L X, et al. Fluidization behavior of binary iron-containing nanoparticle mixtures in a vibro-fluidized bed[J]. Powder Technology, 2016, 304: 101-107.
[15] Yang X L, Fu Z J, Zhao Y M. Slugging behavior of Geldart D particles in a vibrated gas-fluidized bed[J]. Particulate Science and Technology, 2014, 32(6): 537-543. DOI:10.1080/02726351.2014.913750.
[16] Matsusaka S, Kobayakawa M, Mizutani M, et al. Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow[J]. Sci Rep, 2013, 3: 1190. DOI:10.1038/srep01190.
[17] Bacelos M S, Passos M L, Freire J T. Effect of interparticle forces on the conical spouted bed behavior of wet particles with size distribution[J]. Powder Technology, 2007, 174(3): 114-126. DOI:10.1016/j.powtec.2007.01.023.
[18] 朱学军, 吕芹, 叶世超. 振动流化床床层压降理论分析与实验研究[J]. 四川大学学报(工程科学版),2007, 39(1):78-82. DOI:10.3969/j.issn.1009-3087.2007.01.016.
Zhu Xuejun, Lü Qin, Ye Shichao. Theoretical analysis and experimental research of the bed pressure drop in vibrated fluidized bed[J]. Journal of Sichuan University(Engineering Science Edition), 2007, 39(1): 78-82. DOI:10.3969/j.issn.1009-3087.2007.01.016. (in Chinese)
[19] 靳海波, 赵增立, 张济宇, 等. 振动流化床中床层空隙率的分布[J]. 高校化学工程学报,1998, 12(2): 130-135.
  Jin Haibo, Zhao Zengli,Zhang Jiyu, et al. Distribution of bed porosity in vibrated fluidized bed [J]. Journal of Chemical Engineering of Chinese Universities, 1998, 12(2): 130-135.(in Chinese)
[20] 朱学军, 吕芹, 叶世超. 振动流化床临界流化速度理论预测与实验研究[J].高校化学工程学报,2007, 21(1): 59-63. DOI:10.3321/j.issn:1003-9015.2007.01.012.
Zhu Xuejun, Lü Qin, Ye Shichao. Theoretical prediction and experimental investigation on the critical fluidization velocity of vibrated fluidized bed[J]. Journal of Chemical Engineering of Chinese Universities, 2007, 21(1): 59-63. DOI:10.3321/j.issn:1003-9015.2007.01.012. (in Chinese)
[21] McLaughlin L J, Rhodes M J. Prediction of fluidized bed behavior in the presence of liquid bridges[J]. Powder Technology, 2001, 114(1): 213-223. DOI:10.1016/s0032-5910(00)00325-9.

备注/Memo

备注/Memo:
收稿日期: 2017-07-05.
作者简介: 高健(1993—),男,硕士生;钟文琪(联系人),男,博士,教授,博士生导师,wqzhong@seu.edu.cn.
基金项目: 国家自然科学基金重大资助项目(51390492)、国家自然科学基金资助项目(51576046)、江苏省普通高校研究生科研创新计划资助项目(SJLX16_0036).
引用本文: 高健,钟文琪,徐惠斌,等.湿颗粒的振动流化特性实验研究[J].东南大学学报(自然科学版),2018,48(1):71-77. DOI:10.3969/j.issn.1001-0505.2018.01.011.
更新日期/Last Update: 2018-01-20