[1]常岩,吴俊康,薛梦婷,等.受纳米毒性胁迫的亚硝化菌性能恢复[J].东南大学学报(自然科学版),2018,48(1):92-98.[doi:10.3969/j.issn.1001-0505.2018.01.014]
 Chang Yan,Wu Junkang,Xue Mengting,et al.Recovery performance of nitrosomonas europaea under toxicity of nanoparticles[J].Journal of Southeast University (Natural Science Edition),2018,48(1):92-98.[doi:10.3969/j.issn.1001-0505.2018.01.014]
点击复制

受纳米毒性胁迫的亚硝化菌性能恢复()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第1期
页码:
92-98
栏目:
环境科学与工程
出版日期:
2018-01-20

文章信息/Info

Title:
Recovery performance of nitrosomonas europaea under toxicity of nanoparticles
作者:
常岩1吴俊康1薛梦婷1吴际萌1戴文1杨新萍2张健3余冉1
1东南大学能源与环境学院, 南京 210096; 2南京农业大学资源与环境学院, 南京 210095; 3浙江省环境监测中心, 杭州 310012
Author(s):
Chang Yan1 Wu Junkang1 Xue Mengting1 Wu Jimeng1 Dai Wen1 Yang Xinping2 Zhang Jian3 Yu Ran1
1School of Energy and Environment, Southeast University, Nanjing 210096, China
2College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
3Zhejiang Province Environmental Monitoring, Hangzhou 310012, China
关键词:
纳米颗粒 氨氧化菌 去除胁迫 机能恢复
Keywords:
nanoparticles ammonia oxidizing bacterium romove stress functional recovery
分类号:
X703.5
DOI:
10.3969/j.issn.1001-0505.2018.01.014
摘要:
探讨分别受50 mg/L纳米TiO2(n-TiO2)和纳米CeO2(n-CeO2)及1, 10, 25, 50 mg/L纳米ZnO(n-ZnO)6 h胁迫后的生物脱氮系统毒性敏感指示性亚硝酸菌-Nitrosomonas europaea的生化性能恢复.结果表明,分别受3种50 mg/L纳米颗粒胁迫抑制的N.europaea细菌浓度、氨氧化速率、细胞膜完整性及氨单加氧酶(AMO)等指标均无法得到恢复. 除n-ZnO外,受n-TiO2和n-CeO2 胁迫后菌群在短期(12 h)内仍能够维持其氨氧化活性.受损菌群性能恢复能力与纳米颗粒胁迫剂量呈负相关性.分别受25和50 mg/L n-ZnO毒性影响后的菌群氨氧化速率、AMO活性均持续减弱;受10 mg/L n-ZnO胁迫后的受损菌群仅细菌浓度、细胞膜完整性指标在12 h内维持其受损生化性能;而受1 mg/L n-ZnO胁迫后受损菌群细菌浓度、氨氧化速率、细胞膜完整性及AMO酶活性12 h内则可恢复至与正常菌群无显著差异.因此,受纳米颗粒短期胁迫的细菌在胁迫消除后具有生化性能修复潜能,但恢复程度受胁迫种类和胁迫强度制约.
Abstract:
The recovery potentials of the representative ammonia-oxidizing bacteria, Nitrosomonas europaea are investigated after their 6 h exposure to typical metal oxide nanoparticles TiO2(n-TiO2), or CeO2(n-CeO2)at 50 mg/L, or ZnO nanoparticles(n-ZnO)at a series of concentrations(0, 1, 10, 25, and 50 mg/L). The experimental results show that the cell density, membrane integrity, ammonia oxidation rate, and ammonia monooxygenase(AMO)activity can not be recovered after 50 mg/L nanoparticle stress on cells, the impacted cells can maintain their ammonia oxidation activities after 6 h exposure to 50 mg/L n-TiO2 or n-CeO2, while those affected by 25 mg/L or 50 mg/L n-ZnO cause irretrievable cell damages with ammonia oxidation rate and AMO activity deprived; the 10 mg/L n-ZnO impacted cells only maintained cell density and membrane integrity levels during 12 h incubation period; all the physiological and metabolic activities of 1 mg/L n-ZnO impaired cells are nearly completely restored during a 12 h recovery incubation period and display no significant difference with those of normal cells. Therefore, the cells can recover their physiological and metabolic activities after exposure to metal oxide nanoparticles with their recovery potential directly related to nanoparticle types and concentrations.

参考文献/References:

[1] 崔之芬, 诸颖, 李晓明,等. 纳米颗粒诱导的自噬效应及在生物医药领域的应用[J]. 科学通报, 2013, 58(34):3521-3529.
  Cui Zhifen, Zhu Ying, Li Xiaoming, et al. Induction of autophagy by nanoparticles and their application in biomedicine[J]. Science China Press, 2013, 58(34):3521-3529.(in Chinese)
[2] 马丽娟. 纳米小尺寸MOSFET中热载流子效应研究[D]. 南京: 南京大学物理学院, 2014.
[3] 王奕琛, 姜秀娥. 基于碳载小尺寸银纳米颗粒的过氧化氢电化学传感器[J]. 分析化学, 2014, 42(5):689-694. DOI:10.3724/SP.J.1096.2014.30818.
Wang Yichen, Jiang Xiue. Hydrogen peroxide biosensor based on carbon supported ultrafine silver nanoparticles[J]. Chinese Journal of Analytical Chemistry,2014,42(5):689-694. DOI:10.3724/SP.J.1096.2014.30818. (in Chinese)
[4] Westerhoff P, Song G, Hristovski K, et al. Occurrence and removal of titanium at full scale wastewater treatment plants: Implications for TiO2 nanomaterials[J]. Journal of Environmental Monitoring, 2011, 13(5):1195-1203. DOI:10.1039/c1em10017c.
[5] Kiser M A, Westerhoff P, Benn T, et al. Titanium nanomaterial removal and release from wastewater treatment plants[J]. Environmental Science & Technology, 2009, 43(17):6757-6763. DOI:10.1021/es901102n.
[6] Gottschalk F, Sonderer T, Scholz R W, et al. Modeled environmental concentrations of engineered nanomaterials(TiO2, ZnO, Ag, CNT, fullerenes)for different regions[J]. Environmental Science & Technology, 2009, 43(24):9216-9222. DOI:10.1021/es9015553.
[7] Liu L, Fan W, Lu H, et al. Effects of the interaction between TiO2 with different percentages of exposed {001} facets and Cu2+ on biotoxicity in Daphnia magna[J]. Scientific Reports, 2015, 5(1):11121-01-11121-10. DOI:10.1038/srep11121.
[8] Sun Y, Zhang G, He Z, et al. Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae[J]. International Journal of Nanomedicine, 2016, 11:905-918. DOI:10.2147/ijn.s100350.
[9] Zhang X Q, Yin L H, Tang M, et al. ZnO, TiO2, SiO2, and Al2O3 nanoparticles-induced toxic effects on human fetal lung fibroblasts[J]. Biomedical Environment Science, 2011, 24(6):661-669. DOI:10.3967/0895-3988.2011.06.011.
[10] Nowack B. The behavior and effects of nanoparticles in the environment[J]. Environmental Pollution, 2009, 157(4):1063-1064. DOI:10.1016/j.envpol.2008.12.019.
[11] Zheng X, Wu R, Chen Y. Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal[J]. Environmental Science & Technology, 2011, 45(7):2826-2832. DOI:10.1021/es2000744.
[12] Garcia A, Delgado L, Tora J A, et al. Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment[J]. Journal of Hazardous Materials, 2012, 199-200(8):64-72. DOI:10.1016/j.jhazmat.2011.10.057.
[13] Zheng X, Chen Y, Wu R. Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge[J]. Environmental Science & Technology, 2011, 45(17):7284-7290. DOI:10.1021/es2008598.
[14] Wu V C. A review of microbial injury and recovery methods in food[J]. Food Microbiology, 2008, 25(6):735-744. DOI:10.1016/j.fm.2008.04.011.
[15] Hou L, Li K, Ding Y, et al. Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH4 reduction[J]. Chemosphere, 2012, 87(3):248-252. DOI:10.1016/j.chemosphere.2011.12.042.
[16] Fang X, Ran Y, Li B, et al. Stresses exerted by ZnO, CeO2, and anatase TiO2, nanoparticles on the Nitrosomonas europaea[J]. Journal Colloid Interface Science, 2010, 348(2):329-334. DOI:10.1016/j.jcis.2010.04.075.
[17] Yu R, Wu J, Liu M, et al. Toxicity of binary mixtures of metal oxide nanoparticles to Nitrosomonas europaea[J]. Chemosphere, 2016, 153:187-197. DOI:10.1016/j.chemosphere.2016.03.065.
[18] Zhao J, Wang Z, Dai Y, et al. Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter[J]. Water Research, 2013, 47(12):4169-4178. DOI:10.1016/j.watres.2012.11.058.
[19] Kumar A, Pandey A K, Singh S, et al. Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli[J]. Free Radical Biology Medicine, 2011, 51(10):1872-1881. DOI:10.1016/j.freeradbiomed.2011.08.025.
[20] Yu R, Fang X, Somasundaran P, et al. Short-term effects of TiO2, CeO2, and ZnO nanoparticles on metabolic activities and gene expression of Nitrosomonas europaea[J]. Chemosphere, 2015, 128:207-215. DOI:10.1016/j.chemosphere.2015.02.002.
[21] Lopes S, Ribeiro F, Wojnarowicz J, et al. Zinc oxide nanoparticles toxicity to Daphnia magna: size-dependent effects and dissolution[J]. Environmental Toxicology & Chemistry, 2014, 33(1):190-198. DOI:10.1002/etc.2413.
[22] 张鹏, 马宇辉, 张智勇,等. 纳米CeO2对莴苣属植物的种属特异性毒性[C]//中国毒理学会中青年学者科技论坛.银川,2014:33.
[23] Li M, Lin D H, Zhu L Z. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli[J]. Environmental Pollution, 2013, 173:97-102. DOI:10.1016/j.envpol.2012.10.026.
[24] Zheng X, Su Y L, Chen Y G, et al. Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity[J]. Environmental Science & Technology, 2014, 48(23):13800-13807. DOI:10.1021/es504251v.
[25] Adams L K, Lyon D Y, Alvarez P J. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions[J]. Water Research, 2006, 40(19):3527-3532. DOI:10.1016/j.watres.2006.08.004.
[26] Radniecki T S, Semprini L, Dolan M E. Expression of merA, amoA and hao in continuously cultured nitrosomonas europaea cells exposed to zinc chloride additions[J]. Biotechnology & Bioengineering, 2009, 102(2):546-553. DOI:10.1002/bit.22069.
[27] Park S, Ely R L. Genome-wide transcriptional responses of Nitrosomonas europaea to zinc[J]. Archives of Microbiology, 2008, 189(6):541-548. DOI:10.1007/s00203-007-0341-7.
[28] Wu J K, Lu H J, Zhu G G, et al. Regulation of membrane fixation and energy production/conversion for adaptation and recovery of ZnO nanoparticle impacted Nitrosomonas europaea[J]. Applied Microbiology Biotechnology, 2017,101(7): 2953-2965. DOI:10.1007/s00253-017-8092-0.

相似文献/References:

[1]陆荔,马明,张宇,等.纳米材料生物安全性研究进展[J].东南大学学报(自然科学版),2004,34(5):711.[doi:10.3969/j.issn.1001-0505.2004.05.033]
 Lu Li,Ma Ming,Zhang Yu,et al.Development of study on the bio-safety of nanomaterials[J].Journal of Southeast University (Natural Science Edition),2004,34(1):711.[doi:10.3969/j.issn.1001-0505.2004.05.033]
[2]李舒宏,丁一,杜垲,等.纳米TiO_2颗粒强化MDEA溶液鼓泡吸收CO_2的特性[J].东南大学学报(自然科学版),2013,43(4):830.[doi:10.3969/j.issn.1001-0505.2013.04.029]
 Li Shuhong,Ding Yi,Du Kai,et al.CO2 bubble absorption performance enhancement by TiO2 nanoparticles in MDEA solution[J].Journal of Southeast University (Natural Science Edition),2013,43(1):830.[doi:10.3969/j.issn.1001-0505.2013.04.029]

备注/Memo

备注/Memo:
收稿日期: 2017-06-07.
作者简介: 常岩(1990—),女,硕士生;余冉(联系人),女,博士,教授,博士生导师,yuran@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51678134, 51208092, 31370539)、中央高校基本科研业务费专项资金资助项目(3203007405).
引用本文: 常岩,吴俊康,薛梦婷,等.受纳米毒性胁迫的亚硝化菌性能恢复[J].东南大学学报(自然科学版),2018,48(1):92-98. DOI:10.3969/j.issn.1001-0505.2018.01.014.
更新日期/Last Update: 2018-01-20