[1]高鹏,余红发,文静,等.快速砂浆棒法检测矿物掺合料与Li2CO3对ASR抑制作用的适用性评价[J].东南大学学报(自然科学版),2018,48(2):357-362.[doi:10.3969/j.issn.1001-0505.2018.02.026]
 Gao Peng,Yu Hongfa,Wen Jing,et al.Evalution of using accelerated mortar-bars test to detect inhibition efficacy of supplementary cementitious materials and Li2CO3 on alkali-silica reaction[J].Journal of Southeast University (Natural Science Edition),2018,48(2):357-362.[doi:10.3969/j.issn.1001-0505.2018.02.026]
点击复制

快速砂浆棒法检测矿物掺合料与Li2CO3对ASR抑制作用的适用性评价()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第2期
页码:
357-362
栏目:
材料科学与工程
出版日期:
2018-03-20

文章信息/Info

Title:
Evalution of using accelerated mortar-bars test to detect inhibition efficacy of supplementary cementitious materials and Li2CO3 on alkali-silica reaction
作者:
高鹏12余红发1文静3李颖3臧亚美4
1南京航空航天大学土木工程系, 南京 210016; 2内蒙古科技大学土木工程学院, 包头 014010; 3中国科学院青海盐湖研究所, 西宁 810008; 4西藏大学资源与土木工程系, 拉萨 850000
Author(s):
Gao Peng12 Yu Hongfa1 Wen Jing3 Li Ying3 Zang Yamei4
1Department of Civil Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
3Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
4Department of Resources and Civil Engineering, Tibet University, Lhasa 850000, China
关键词:
快速砂浆棒法 抑制碱硅酸反应 矿物掺合料 锂盐 规程评价
Keywords:
accelerated mortar-bars test inhibition of alkali-silica reaction supplementary cementitious materials lithium-based admixture procedure evaluation
分类号:
TU528
DOI:
10.3969/j.issn.1001-0505.2018.02.026
摘要:
通对延长快速砂浆棒法(AMBT)浸泡龄期至3 a以上,对使用AMBT来检测胶材外加剂(包括矿物掺合料SCM和Li2CO3)抑制碱-硅酸反应(ASR)的有效性进行了研究,并分析了AMBT的水泥碱含量的影响、判定龄期和判定限值.结果表明,AMBT能适用于SCM的抑制有效性检测,但不能有效反映Li2CO3的抑制作用;14 d判定龄期能有效体现SCM抑制作用;ASTM C1567和《铁路混凝土工程施工质量验收标准》(TB 10424—2010)的判定限值是适用的,而《预防混凝土碱骨料反应技术规范》(GB/T 50733—2011)的判定限值过于严格;水泥碱含量不是AMBT的主要影响因素.因此,建议使用AMBT评价SCM对ASR的抑制作用,GB/T 50733—2011的判定结果不宜作为判定SCM抑制ASR无效的参考依据,AMBT无需控制水泥碱含量.
Abstract:
The application of accelerated mortar-bars test(AMBT)in detecting the efficacy of binder admixtures to control alkali-silica reaction(ASR)was studied, including supplementary cementitious materials(SCM)and Li2CO3, by prolonging the AMBT curing age to more than 3 years. And some factors in AMBT were analyzed, including the determination of curing age, the determination limits of mortar-bars expansions and the influences of initial alkali content in cement. The results show that, the true inhibiting effects on SCM against ASR can be reflected in AMBT, but the Li2CO3’s can not be reflected. The curing age at the 14th day in AMBT can determine the inhibiting efficacy of SCM. The limits of mortar-bar expansions in both ASTM C1567 and Standard for Constructional Quality Acceptance of Railway Concrete Engineering TB 10424—2010 are suitable for detecting the inhibiting effects of SCM against ASR, but the limits of mortar-bar expansions in Technical code for prevention of alkali-aggregate reaction in concrete GB/T 50733—2011 are overly rigorous. And the initial alkali content in cement is not the main factor to disturb the results of AMBT. Therefore, AMBT is recommended for evaluating the inhibiting effects of SCM on ASR. The invalid results of SCM determined by GB/T 50733—2011 can not be used as a reference for rejecting the mitigation of SCM on ASR and no need to adjust the initial alkali content of cement in AMBT.

参考文献/References:

[1] Stanton T E. Expansion of concrete through reaction between cement and aggregate [M]//The Alkali-Silica Reaction in Concrete. New York: Van Nostrand Reinhold, 1992: 17-19.
[2] Swamy R N. The alkali-silica reaction in concrete [M]. New York: Van Nostrand Reinhold, 1992: 1-3.
[3] Saha A K, Sarker P K. Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars [J]. Construction and Building Materials, 2016, 123: 135-142. DOI:10.1016/j.conbuildmat.2016.06.144.
[4] Kandasamy S, Shehata M H. The capacity of ternary blends containing slag and high-calcium fly ash to mitigate alkali silica reaction [J]. Cement & Concrete Composites, 2014, 49: 92-99. DOI:10.1016/j.cemconcomp.2013.12.008.
[5] Esteves T C, Rajamma R, Soares D, et al. Use of biomass fly ash for mitigation of alkali-silica reaction of cement mortars [J]. Construction and Building Materials, 2012, 26(1): 687-693. DOI:10.1016/j.conbuildmat.2011.06.075.
[6] Kim T, Olek J. The effects of lithium ions on chemical sequence of alkali-silica reaction [J]. Cement and Concrete Research, 2016, 79: 159-168. DOI:10.1016/j.cemconres.2015.09.013.
[7] Leemann A, Bernard L, Alahrache S, et al. ASR prevention—Effect of aluminum and lithium ions on the reaction products [J]. Cement and Concrete Research, 2015, 76: 192-201.
[8] Leemann A, Loertscher L, Bernard L, et al. Mitigation of ASR by the use of LiNO3—Characterization of the reaction products [J]. Cement and Concrete Research, 2014, 59: 73-86. DOI:10.1016/j.cemconres.2014.02.003.
[9] Thomas M, Fournier B, Folliard K, et al. Test methods for evaluating preventive measures for controlling expansion due to alkali-silica reaction in concrete [J]. Cement and Concrete Research, 2006, 36(10): 1842-1856. DOI:10.1016/j.cemconres.2006.01.014.
[10] Latifee E R, Rangaraju P R. Miniature concrete prism test: Rapid test method for evaluating alkali-silica reactivity of aggregates [J]. Journal of Materials in Civil Engineering, 2015, 27(7): 04014215.DOI:10.1061/(asce)mt.1943-5533.0001183.
[11] ASTM. C441/C441M-11 Standard test method for effectiveness of pozzolans or ground blast-furnace slag in preventing excessive expansion of concrete due to the alkali-silica reaction [S]. West Conshohocken,USA: ASTM, 2011.
[12] ASTM. C1567-13 Standard test method for determining the potential alkali-silica reactivity of combinations of cementitious materials and aggregate(accelerated mortar-bar method)[S]. West Conshohocken,USA: ASTM, 2013.
[13] 中华人民共和国住房和城乡建设部.GB/T 50733—2011预防混凝土碱骨料反应技术规范[S].北京:中国建筑工业出版社,2011.
[14] 中华人民共和国铁道部.TB 10424—2010铁路混凝土工程施工质量验收标准[S].北京:中国铁道出版社,2010.
[15] 中国国家标准化管理委员会.GB/T 14684—2011建设用砂[S].北京:中国标准出版社,2011.
[16] ASTM. C1260-14 Standard test method for potential alkali reactivity of aggregates(mortar-bar method)[S]. West Conshohocken,USA: ASTM, 2014.
[17] Feng X, Thomas M D A, Bremner T W, et al. Studies on lithium salts to mitigate ASR-induced expansion in new concrete: A critical review [J]. Cement and Concrete Research, 2005, 35(9): 1789-1796. DOI:10.1016/j.cemconres.2004.10.013.
[18] Millard M J, Kurtis K E. Effects of lithium nitrate admixture on early-age cement hydration [J]. Cement and Concrete Research, 2008, 38(4): 500-510. DOI:10.1016/j.cemconres.2007.11.009.
[19] Bektas F, Wang K, Ceylan H. Effect of portland cement fineness on ASTM C1260 expansion [J]. Journal of Testing and Evaluation, 2008, 36(5): 1-7.
[20] Berra M, Mangialardi T, Paolini A E. Testing natural sands for alkali reactivity with the ASTM C1260 mortar-bar expansion method [J]. Journal of the Ceramic Society of Japan, 1998, 106(1231): 237-241. DOI:10.2109/jcersj.106.237.
[21] Owsiak Z. Microstructure of alkali-silica reaction products in conventional standard and accelerated testing [J]. Ceramics Silikaty, 2003, 47(3): 108-115.

备注/Memo

备注/Memo:
收稿日期: 2017-09-03.
作者简介: 高鹏(1979—),男, 博士生, 讲师;余红发(联系人),男,博士,教授,博士生导师,yuhongfa@nuaa.edu.cn.
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2015CB655102)、国家自然科学基金资助项目(51608512)、中国科学院西部之光基金资助项目(2014).
引用本文: 高鹏,余红发,文静,等.快速砂浆棒法检测矿物掺合料与Li2CO3对ASR抑制作用的适用性评价[J].东南大学学报(自然科学版),2018,48(2):357-362. DOI:10.3969/j.issn.1001-0505.2018.02.026.
更新日期/Last Update: 2018-03-20