[1]韩四维,沈炯,潘蕾.非线性机炉协调系统的多变量输出反馈L1自适应控制[J].东南大学学报(自然科学版),2018,48(3):417-426.[doi:10.3969/j.issn.1001-0505.2018.03.007]
 Han Siwei,Shen Jiong,Pan Lei.Output feedback L1 adaptive control MIMO systems for a nonlinear boiler-turbine unit[J].Journal of Southeast University (Natural Science Edition),2018,48(3):417-426.[doi:10.3969/j.issn.1001-0505.2018.03.007]
点击复制

非线性机炉协调系统的多变量输出反馈L1自适应控制()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第3期
页码:
417-426
栏目:
能源与动力工程
出版日期:
2018-05-20

文章信息/Info

Title:
Output feedback L1 adaptive control MIMO systems for a nonlinear boiler-turbine unit
作者:
韩四维沈炯潘蕾
东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Han Siwei Shen Jiong Pan Lei
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
机炉协调系统 非线性控制 L1自适应控制 输出反馈
Keywords:
boiler-turbine coordination system nonlinear control L1 adaptive control output feedback
分类号:
TK323;TP273
DOI:
10.3969/j.issn.1001-0505.2018.03.007
摘要:
针对机炉协调系统非线性、参数时变、受扰等特点,将现有单输入单输出、线性输出映射系统的输出反馈L1自适应控制算法推广至一类多输入多输出、非线性输出映射的系统.利用2-范数意义下利普希茨条件的性质,给出根据被控对象数学模型确定参数搜索界的方法,并对所设计控制系统的稳定性及瞬态跟踪误差界进行了分析.采用机炉系统的阀门反馈信号作为状态观测器的输入信号,解决了阀门开度的物理限制导致的积分饱和问题.利用经典的 Bell-Åström机炉协调系统模型,分别对汽包水位偏差设定值不为零/为零的2组典型工况点进行了大范围负荷跟踪的仿真实验.实验结果表明,所提出的控制算法相比传统的鲁棒控制算法,过渡时间短及超调量小,在进行大范围负荷跟踪时,无需重新整定控制器参数仍能保持优良的控制性能.
Abstract:
Aiming at the characteristics of boil-turbine coordination systems, such as nonlinearity, time-varying parameters and disturbance, existing output L1 adaptive control algorithm for single-input single-output(SISO)systems with linear output mapping was extended to a class of multi-input multi-output(MIMO)systems with nonlinear output mapping. An approach was given using the plant’s mathematical model and the properties of Lipchitz condition under 2-norm to determine the parameter searching boundary. Meanwhile, the stability and the transient tracking error of the proposed control system are theoretically analyzed. Valve feedback signals were used as the input of the state predictor to solve the integral saturation problem caused by physical limitation of the valves. Simulation experiment of wide range load tracking to two groups of typical operating points with nonzero/zero deviation of drum water level were carried on the representative Bell-Åström boiler-turbine unit model. The results show that compared with the conventional robust control algorithm, the control algorithm has advantages of shorter transient time and smaller overshoot. Meamwhile the proposed controller maintains excellent performance without parameter returning when conducting wide range load tracking.

参考文献/References:

[1] 刘吉臻, 曾德良, 田亮, 等. 新能源电力消纳与燃煤电厂弹性运行控制策略 [J]. 中国电机工程学报, 2015, 35(21): 5385-5394. DOI:10.13334/j.0258-8013.pcsee.2015.21.001.
Liu Jizhen, Zeng Deliang, Tian Liang, et al. Control strategy for operating flexibility of coal-fired power plants in alternate electrical power systems [J]. Proceedings of the CSEE, 2015, 35(21): 5385-5394. DOI:10.13334/j.0258-8013.pcsee.2015.21.001. (in Chinese)
[2] Wu J, Nguang S K, Shen J, et al. Robust H-Inf tracking control of boiler-turbine systems [J]. ISA Transactions, 2010, 49(3): 369-375. DOI:10.1016/j.isatra.2010.02.002.
[3] Huang Zuyi, Li Donghai, Jiang Xuezhi, et al. Gain scheduled servo system for boiler-turbine unit [J]. Proceedings of the CSEE, 2003, 23(10): 191-198.
[4] Yin F, Li S, Li Q, et al. Application of generalized predictive control in ultra-supercritical power plant based on structure analysis [C]//IEEE 10th Conference on Industrial Electronics and Applications. Auckland, New Zealand, 2015: 1570-1574. DOI:10.1109/iciea.2015.7334359.
[5] Wu X, Shen J, Li Y, et al. Data-driven modeling and predictive control for boiler-turbine unit using fuzzy clustering and subspace methods [J]. ISA Trans, 2014, 53(3): 699-708. DOI:10.1016/j.isatra.2013.12.033.
[6] Alturki F A, Abdennour A B. Neuro-fuzzy control of a steam boiler-turbine unit [C]// Proceedings of the 1999 IEEE International Conference on Control Applications. Hawaii, USA, 1999:1050-1055.
[7] Hovakimyan N,Cao C. L1 adaptive control theory: Guaranteed robustness with fast adaptation[M]. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2010:291-294.
[8] Luo J, Cao C. L1 adaptive output feedback controller for a class of nonlinear systems [C]//50th IEEE Conference on Decision and Control and European Control Conference. Orlando,FL,USA, 2011: 5425-5430. DOI:10.1109/cdc.2011.6161018.
[9] Luo J, Cao C. L1 adaptive controller for a class of nonlinear systems [J]. Journal of Dynamic Systems, Measurement, and Control, 2014,136(3): 031023. DOI:10.1115/1.4026302.
[10] Thu K M, Igorevich G A. Modeling and design optimization for quadcopter control system using L1 adaptive control [C]// Information Technology, Electronics and Mobile Communication Conference. Vancouver, BC, Canada, 2016:1-5.
[11] Chen Q, Wan J, Ai J. L1 adaptive control of a generic hypersonic vehicle model with a blended pneumatic and thrust vectoring control strategy [J]. Science China Information Sciences, 2017,60(3): 032203. DOI:10.1007/s11432-016-0169-8.
[12] Ren R, Zou Z, Wang X. L1 adaptive control used in path following of surface ships [C]//33rd Chinese Control Conference. Nanjing,China, 2014:8047-8053.
[13] Li Z, Hovakimyan N, Kaasa G O. Bottom hole pressure estimation and L1 adaptive control in managed pressure drilling system [J]. International Journal of Adaptive Control and Signal Processing, 2017,31(4): 545-561. DOI:10.1002/acs.2672.
[14] Cao C, Hovakimyan N. L1 adaptive output feedback controller for systems of unknown dimension [J]. IEEE Trans on Automatic Control, 2008, 53(3): 815-821. DOI:10.1109/tac.2008.919550.
[15] Åström K J, Bell R. Dynamic models for boiler-turbine alternator units: Data logs and parameter estimation for a 160 MW unit [R]. Lund, Sweden: Lund University, 1987.
[16] Tan W, Marquez H J, Chen T, et al. Analysis and control of a nonlinear boiler-turbine unit [J]. Journal of Process Control, 2005, 15(8): 883-891. DOI:10.1016/j.jprocont.2005.03.007.
[17] Pan L, Luo J, Cao C, et al. L1 adaptive control for improving load-following capability of nonlinear boiler-turbine units in the presence of unknown uncertainties [J]. Simulation Modelling Practice and Theory, 2015,57:26-44.
[18] 郭俊君, 郭鹏, 韩璞, 等. 锅炉-汽轮机对象的多变量状态反馈线性化 [J]. 华北电力大学学报(自然科学版), 2004, 31(4): 54-57.
  Guo Junjun,Guo Peng, Han Pu, et al. Application of MIMO state feedback linearization in boiler-turbine systems [J]. Journal of North China Electric Power University, 2004, 31(4): 54-57.(in Chinese)
[19] Isidori A. Nonlinear control systems [M]. 3rd ed. London, UK: Springer Science & Business Media, 2013:227-240.
[20] Kharisov E, Kim K K, Hovakimyan N, et al. Limiting behavior of L1 adaptive controllers [C]//AIAA Guidance, Navigation and Control Conference. Portland, Oregon, 2011: 1-25.
[21] Cao C, Hovakimyan N. L1 adaptive controller for a class of systems with unknown nonlinearities: Part Ⅰ [C]// American Control Conference. Seattle, Washington, USA, 2008: 4093-4098.
[22] Zhang T, Feng G, Zeng X J. Output tracking of constrained nonlinear processes with offset-free input-to-state stable fuzzy predictive control [J]. Automatica, 2009, 45(4): 900-909. DOI:10.1016/j.automatica.2008.11.016.

备注/Memo

备注/Memo:
收稿日期: 2017-10-27.
作者简介: 韩四维(1988—),男,博士生;沈炯(联系人),男,博士,教授,博士生导师,shenj@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51576040,51576041).
引用本文: 韩四维,沈炯,潘蕾.非线性机炉协调系统的多变量输出反馈L1自适应控制[J].东南大学学报(自然科学版),2018,48(3):417-426. DOI:10.3969/j.issn.1001-0505.2018.03.007.
更新日期/Last Update: 2018-05-20