[1]李彦军,李舒宏,陈向阳,等.纳米强化氨水垂直管外降膜发生模型[J].东南大学学报(自然科学版),2018,48(3):427-434.[doi:10.3969/j.issn.1001-0505.2018.03.008]
 Li Yanjun,Li Shuhong,Chen Xiangyang,et al.Model of ammonia-water falling film generation outside vertical tube with nanofluids[J].Journal of Southeast University (Natural Science Edition),2018,48(3):427-434.[doi:10.3969/j.issn.1001-0505.2018.03.008]
点击复制

纳米强化氨水垂直管外降膜发生模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第3期
页码:
427-434
栏目:
能源与动力工程
出版日期:
2018-05-20

文章信息/Info

Title:
Model of ammonia-water falling film generation outside vertical tube with nanofluids
作者:
李彦军12李舒宏1陈向阳2杜垲1杨柳1
1东南大学能源与环境学院, 南京 210096; 2江苏省产品质量监督检验研究院, 南京 210007
Author(s):
Li Yanjun12 Li Shuhong1 Chen Xiangyang2 Du Kai1 Yang Liu1
1School of Energy and Environment, Southeast University, Nanjing 210096, China
2 Jiangsu Product Quality Testing and Inspection Institute, Nanjing 210007, China
关键词:
降膜发生 氨水 纳米流体 模型 传热 传质
Keywords:
falling film generation ammonia-water nanofluid model heat transfer mass transfer
分类号:
TB6512;TB383
DOI:
10.3969/j.issn.1001-0505.2018.03.008
摘要:
为了提高氨水发生效率,在氨水溶液中添加纳米颗粒形成纳米流体,将发生过程中降膜溶液膜厚的变化、膜厚方向的对流以及氨水纳米溶液物性的变化作为影响因素,建立了垂直管外氨水降膜发生过程数学模型.通过对该数学模型进行数值求解,得到平均传热系数、传质系数、发生速率随质量流量、氨水浓度、发生压力以及热负荷的变化情况.结果表明,选择合适比例的氨水纳米溶液对降膜发生过程具有一定的强化作用.添加纳米的氨水纳米流体较氨水基液平均传热系数增加约4%;平均传质系数增长约15%;发生速率平均增长约25%.所得模拟结果与实验值吻合较好.
Abstract:
To enhance the efficiency of falling film generation process, nanoparticles were added into solution to form ammonia-water nanofluid. Based on the change of film thickness, the convection in the film thickness and the change of physical properties of ammonia solution during the generation process, a mathematical model describing the process of falling film generation process outside the vertical tube was established. Through numerical solution of the mathematical model, the average heat and mass transfer coefficient and the rates of generation vary with mass flow, ammonia concentration, pressure and heat load were obtained. The simulation results show that the proper amount of nanoparticles had a certain strengthening effect on the falling film generation process. Compared with the solution without nanoparticles, with the addition of nanoparticles the average heat transfer coefficient increases by about 4%, the average mass transfer coefficient increase by about 15%, and the average generation rate increases by about 25%. The simulation results are in good agreement with the experimental results.

参考文献/References:

[1] Choi S U S. Enhancing thermal conductivity of fluids with nanoparticles[J]. ASME-Publications-Fed, 1995, 231: 99-106.
[2] 吴晗, 杨峻. 多壁碳纳米管-水纳米流体导热机理及重力热管实验研究[J]. 化工学报, 2017, 68(6): 2315-2320. DOI:10.11949/j.issn.0438-1157.20161492.
Wu Han, Yang Jun. Thermal conduction mechanism of multi-walled carbonnanotubes-deionized water nanofluids and experimental research in gravity heat pipe[J]. Journal of Chemical Industry and Engineering, 2017, 68(6): 2315-2320. DOI:10.11949/j.issn.0438-1157.20161492. (in Chinese)
[3] Akilu S, Baheta A T, Sharma K V. Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions[J]. Journal of Molecular Liquids, 2017, 246: 396-405.
[4] Zyla G, Fal J, Estelle P. Thermophysical and dielectric profiles of ethylene glycol based titanium nitride(TiN-EG)nanofluids with various size of particles[J]. International Journal of Heat and Mass Transfer, 2017, 113: 1189-1199. DOI:10.1016/j.ijheatmasstransfer.2017.06.032.
[5] Saptoro A, Kanazawa Y, Asada M, et al. Microwave irradiation based non-chemical method to manipulate surface tension of nanofluids[J]. Experimental Thermal and Fluid Science, 2016, 72: 228-234. DOI:10.1016/j.expthermflusci.2015.11.015.
[6] Sharma T,Sangwai J S. Silica nanofluids in polyacrylamide with and without surfactant: Viscosity, surface tension, and interfacial tension with liquid paraffin[J]. Journal of Petroleum Science and Engineering, 2017, 152: 575-585. DOI:10.1016/j.petrol.2017.01.039.
[7] Jiang W X, Du K, Li Y J,et al. Experimental investigation on the influence of high temperature on viscosity, thermal conductivity and absorbance of ammonia-water nanofluids[J]. International Journal of Refrigeration, 2017, 82:189-198.DOI:10.1016/j.ijrefrig.2017.05.030.
[8] Aberoumand S, Jafarimoghaddam A. Mixed convection heat transfer of nanofluids inside curved tubes: An experimental study[J]. Applied Thermal Engineering, 2016, 108: 967-979.
[9] Li Y, Fernández-Seara J, Du K, et al. Experimental investigation on heat transfer and pressure drop of ZnO/ethylene glycol-water nanofluids in transition flow[J]. Applied Thermal Engineering, 2016, 93: 537-548. DOI:10.1016/j.applthermaleng.2015.09.020.
[10] Hussien A A, Abdullah M Z, Yusop N M, et al. Experiment on forced convective heat transfer enhancement using MWCNTs/GNPs hybrid nanofluid and mini-tube[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1121-1131. DOI:10.1016/j.ijheatmasstransfer.2017.08.120.
[11] Huminic G, Huminic A, Fleaca C, et al. Thermo-physical properties of water based SiC nanofluids for heat transfer applications[J]. International Communications in Heat and Mass Transfer, 2017, 84: 94-101. DOI:10.1016/j.icheatmasstransfer.2017.04.006.
[12] 许世民, 郎中敏, 王亚雄, 等. 羧基化碳纳米管/水纳米流体核沸腾传热研究[J]. 工程热物理学报, 2017, 38(2): 310-317.
  Xu Shimin, Lang Zhongmin, Wang Yaxiong, et al. Nucleate boiling heat transfer characteristics on smooth plate with carboxylated carbon nano-tubes/H2O nanofluids[J]. Journal of Engineering Thermophysics, 2017, 38(2): 310-317.(in Chinese)
[13] Ali H M, Generous M M, Ahmad F, et al. Experimental investigation of nucleate pool boiling heat transfer enhancement of TiO2-water based nanofluids[J]. Applied Thermal Engineering, 2017, 113: 1146-1151. DOI:10.1016/j.applthermaleng.2016.11.127.
[14] Kim J K, Jung J Y, Kang Y T. Absorption performance enhancement bynano-particles and chemical surfactants in binary nanofluids[J]. International Journal of Refrigeration, 2007, 30(1): 50-57. DOI:10.1016/j.ijrefrig.2006.04.006.
[15] Kim Y J, Lee J K, Kang Y T. The effect of oil-droplet on bubble absorption performance in binary nanoemulsions[J]. International Journal of Refrigeration, 2011, 34(8): 1734-1740. DOI:10.1016/j.ijrefrig.2011.07.008.
[16] 苏风民, 马学虎, 陈嘉宾, 等. 双组分纳米流体强化泡状吸收过程的实验研究[J]. 制冷学报, 2008, 29(1): 8-12. DOI:10.3969/j.issn.0253-4339.2008.01.002.
Su Fengmin, Ma Xuehu, Chen Jiabin, et al. Experimental study on enhancement of bubble absorption with binary nanofluid[J]. Journal of Refrigeration, 2008, 29(1): 8-12. DOI:10.3969/j.issn.0253-4339.2008.01.002. (in Chinese)
[17] 盛伟, 武卫东, 张华, 等. 纳米颗粒对氨水鼓泡吸收性能的强化实验[J]. 制冷学报, 2010, 31(1):31-34. DOI:10.3969/j.issn.0253-4339.2010.01.031.
Sheng Wei, Wu Weidong, Zhang Hua, et al. Experimental study on enhancement of ammonia bubble absorption process by adding nanoparticles[J]. Journal of Refrigeration, 2010, 31(1): 31-34. DOI:10.3969/j.issn.0253-4339.2010.01.031. (in Chinese)
[18] 盛伟, 武卫东, 张华, 等. Al2O3纳米颗粒对氨水鼓泡吸收过程的强化影响[J]. 化工学报, 2008, 59(11): 2762-2767. DOI:10.3321/j.issn:0438-1157.2008.11.011.
Sheng Wei, Wu Weidong, Zhang Hua, et al. Enhancing influence of Al2O3 nano-particles on ammonia bubble absorption process[J]. Journal of Chemical Industry and Engineering, 2008, 59(11): 2762-2767. DOI:10.3321/j.issn:0438-1157.2008.11.011. (in Chinese)
[19] Yang L, Du K,Niu X F, et al. Experimental study on enhancement of ammonia-water falling film absorption by adding nano-particles[J]. International Journal of Refrigeration, 2011, 34(3): 640-647. DOI:10.1016/j.ijrefrig.2010.12.017.
[20] Li Y J, Du K, Hu H T, et al. Experimental investigation on enhancement of ammonia-water falling film generation by adding carbon black nanoparticles[J]. Experimental Thermal and Fluid Science, 2015, 68: 593-600. DOI:10.1016/j.expthermflusci.2015.06.019.
[21] 李彦军, 杜垲, 李舒宏, 等. 铁酸锌纳米强化氨水发生过程实验研究[J]. 制冷学报, 2016, 37(6): 71-78. DOI:10.3969/j.issn.0253-4339.2016.06.071.
Li Yanjun, Du Kai, Li Shuhong, et al. Experimental investigation on enhancement of ammonia-water falling film generation by adding ZnFe2O4 nano-particles[J]. Journal of Refrigeration, 2016, 37(6): 71-78. DOI:10.3969/j.issn.0253-4339.2016.06.071. (in Chinese)
[22] 李彦军, 杜垲, 江巍雪. 纳米强化氨水发生过程机理分析[J]. 低温与超导, 2016, 44(5): 51-57. DOI:10.16711/j.1001-7100.2016.05.012.
Li Yanjun, Du Kai, Jiang Weixue. Mechanism analysis on performance enhancement of ammonia-water falling film generation by nanofluid[J]. Cryogenics and Superconductivity, 2016, 44(5): 51-57. DOI:10.16711/j.1001-7100.2016.05.012. (in Chinese)

相似文献/References:

[1]陈世玉,华君叶,陈亚平,等.用于余热回收的三压力氨水动力循环的热力性能[J].东南大学学报(自然科学版),2012,42(4):659.[doi:10.3969/j.issn.1001-0505.2012.04.016]
 Chen Shiyu,Hua Junye,Chen Yaping,et al.Thermal performance of triple pressure ammonia-water power cycle for waste heat recovery[J].Journal of Southeast University (Natural Science Edition),2012,42(3):659.[doi:10.3969/j.issn.1001-0505.2012.04.016]

备注/Memo

备注/Memo:
收稿日期: 2017-12-08.
作者简介: 李彦军(1978—),男,博士;李舒宏(联系人),男,博士,教授,博士生导师,equart@163.com.
基金项目: 国家自然科学基金资助项目(51476026)、“十三五”国家科技支撑计划资助项目(2017YFC0702501)、江苏省自然科学青年基金资助项目(BK20150607).
引用本文: 李彦军,李舒宏,陈向阳,等.纳米强化氨水垂直管外降膜发生模型[J].东南大学学报(自然科学版),2018,48(3):427-434. DOI:10.3969/j.issn.1001-0505.2018.03.008.
更新日期/Last Update: 2018-05-20