[1]黄青隆,罗永峰,相阳,等.钢拱结构面内地震反应分析的改进模态组合系数法[J].东南大学学报(自然科学版),2018,48(3):470-477.[doi:10.3969/j.issn.1001-0505.2018.03.014]
 Huang Qinglong,Luo Yongfeng,Xiang Yang,et al.Modified factored modal combination method for seismic response analysis of planar steel arches[J].Journal of Southeast University (Natural Science Edition),2018,48(3):470-477.[doi:10.3969/j.issn.1001-0505.2018.03.014]
点击复制

钢拱结构面内地震反应分析的改进模态组合系数法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第3期
页码:
470-477
栏目:
土木工程
出版日期:
2018-05-20

文章信息/Info

Title:
Modified factored modal combination method for seismic response analysis of planar steel arches
作者:
黄青隆罗永峰相阳朱钊辰
同济大学土木工程学院, 上海 200092
Author(s):
Huang Qinglong Luo Yongfeng Xiang Yang Zhu Zhaochen
College of Civil Engineering, Tongji University, Shanghai 200092, China
关键词:
模态推覆分析 模态组合系数法 几何非线性
Keywords:
modal pushover analysis factored modal combination method geometrical nonlinearity
分类号:
TU973.31
DOI:
10.3969/j.issn.1001-0505.2018.03.014
摘要:
为了在钢拱结构面内地震反应的推覆分析中考虑几何非线性效应和多阶振型贡献,提出了一种改进模态组合系数法.首先,采用非线性刚度比αk衡量几何非线性效应对结构初始频率的影响;然后,定义阈值β,用于选取控制振型,构造基于控制振型的组合荷载模式;最后,使用组合荷载模式进行推覆分析,获取结构反应.针对矢跨比为1/4和1/5的2个钢拱模型的分析结果表明:改进方法简便有效;相对于时程分析结果,峰值地面加速度为0.3g时,矢跨比为1/4和1/5的模型的x向峰值位移平均误差分别为2.7%和-7.2%,y向峰值位移平均误差分别为-6.5%和5.8%,杆件峰值应力平均误差分别为-5.0%和-4.3%;随着峰值地面加速度的增加,各向峰值位移、峰值应力的平均误差仍保持稳定.
Abstract:
In order to consider the effect of geometrical nonlinearity and multi-mode contributions in the pushover analysis of the seismic response of planar steel arches, a modified factored modal combination method is proposed. First, a nonlinear stiffness ratio αk is introduced to quantify the effect of geometrical nonlinearity on the initial structural frequency. Then, a limit value β is defined for selecting dominated modes, and the combined load profiles are established based on the dominated modes. Finally, the structural responses are obtained by pushover analysis based on the combined load profiles. The results of two planar steel arches with the span-rise ratio of 1/4 and 1/5 show that the modified method is convenient and effective. Compared with the results of response history analysis, when the peak ground acceleration is 0.3g, the average errors of the steel arches in the x direction peak displacement with the span-rise ratios of 1/4 and 1/5 are 2.7% and -7.2%, respectively, and -6.5% and 5.8% in the y direction. The average errors in the peak member stress are -5.0% and -4.3%, respectively. With the increase of the peak ground acceleration, the average errors of the peak displacement and the peak member stress keep stable in the x and y directions.

参考文献/References:

[1] 罗永峰,韩庆华,李海旺. 建筑钢结构稳定理论与应用[M]. 北京: 人民交通出版社, 2010:58-59.
[2] 相阳,罗永峰,郭小农,等. 空间结构弹塑性地震反应分析的简化模型与方法[J]. 东南大学学报(自然科学版),2015,45(4):750-755. DOI: 10.3969/j.issn.1001-0505.2015.04.024.
Xiang Yang, Luo Yongfeng, Guo Xiaonong,et al. Simplified model and procedure for elasto-plastic seismic response analysis of spatial structure [J]. Journal of Southeast University(Natural Science Edition),2015,45(4):750-755. DOI:10.3969/j.issn.1001-0505.2015.04.024. (in Chinese)
[3] Chopra A K,Goel R K. A modal pushover analysis procedure for estimating seismic demands for buildings[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(3): 561-582. DOI:10.1002/eqe.144.
[4] Xiang Y,Luo Y F, Shen Z Y. An extended modal pushover procedure for estimating the in-plane seismic responses of latticed arches[J]. Soil Dynamics and Earthquake Engineering, 2017, 93: 42-60. DOI:10.1016/j.soildyn.2016.12.005.
[5] 相阳,罗永峰,郭小农,等. 基于整体刚度参数的空间结构模态推覆分析[J]. 同济大学学报(自然科学版), 2015, 43(12): 1771-1776. DOI: 10.11908/j.issn.0253-374x.2015.12.001.
Xiang yang, Luo Yongfeng, Guo Xiaonong, et al. Modal pushover analysis of spatial structures based on the overall structural stiffness parameter[J]. Journal of Tongji Unversity(Natural Science Edition), 2015, 43(12): 1771-1776. DOI:10.11908/j.issn.0253-374x.2015.12.001. (in Chinese)
[6] Chopra A K,Goel R K, Chinatanapakdee C. Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands [J]. Earthquake Spectra, 2004, 20(3): 757-778.
[7] Kunnath S K. Identification of modal combinations for nonlinear static analysis of building structures[J]. Computer-Aided Civil and Infrastructure Engineering, 2004, 19(4): 246-259. DOI:10.1111/j.1467-8667.2004.00352.x.
[8] Abbasnia R, Davoudi A T, Maddah M M. An adaptive pushover procedure based on effective modal mass combination rule[J]. Engineering Structures, 2013, 52: 654-666. DOI:10.1016/j.engstruct.2013.03.029.
[9] Park H G,Eom T, Lee H. Factored modal combination for evaluation of earthquake load profiles[J]. Journal of Structural Engineering, 2007, 133(7): 956-968. DOI:10.1061/(asce)0733-9445(2007)133:7(956).
[10] Shi Y, Wang M, Wang Y. Experimental and constitutive model study of structural steel under cyclic loading[J]. Journal of Constructional Steel Research, 2011, 67(8): 1185-1197. DOI:10.1016/j.jcsr.2011.02.011.

备注/Memo

备注/Memo:
收稿日期: 2017-11-29.
作者简介: 黄青隆(1991—),男,博士生;罗永峰(联系人),男,博士,教授,博士生导师,yfluo93@tongji.edu.cn.
基金项目: 国家自然科学基金资助项目(51378379).
引用本文: 黄青隆,罗永峰,相阳,等.钢拱结构面内地震反应分析的改进模态组合系数法[J].东南大学学报(自然科学版),2018,48(3):470-477. DOI:10.3969/j.issn.1001-0505.2018.03.014.
更新日期/Last Update: 2018-05-20