[1]张芹,郭力,郭小明.氯离子环境下钢筋混凝土构件多筋锈胀破坏模式[J].东南大学学报(自然科学版),2018,48(3):528-536.[doi:10.3969/j.issn.1001-0505.2018.03.022]
 Zhang Qin,Guo Li,Guo Xiaoming.Damage pattern on multi-rebar corroded concrete structures in high chloride environment[J].Journal of Southeast University (Natural Science Edition),2018,48(3):528-536.[doi:10.3969/j.issn.1001-0505.2018.03.022]
点击复制

氯离子环境下钢筋混凝土构件多筋锈胀破坏模式()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第3期
页码:
528-536
栏目:
数学、物理学、力学
出版日期:
2018-05-20

文章信息/Info

Title:
Damage pattern on multi-rebar corroded concrete structures in high chloride environment
作者:
张芹郭力郭小明
东南大学土木工程学院, 南京 210096; 东南大学江苏省工程力学分析重点实验室, 南京 210096
Author(s):
Zhang Qin Guo Li Guo Xiaoming
School of Civil Engineering, Southeast University, Nanjing 210096, China
Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 210096, China
关键词:
氯离子 过程耦合 多筋锈蚀 配筋率
Keywords:
chloride ion process coupling multi-rebar corrosion reinforcement ratio
分类号:
O34
DOI:
10.3969/j.issn.1001-0505.2018.03.022
摘要:
针对钢筋锈胀与氯离子扩散相互加强的非线性破坏过程开展了数值模拟研究,基于软件ABAQUS平台,通过二次开发,提出了考虑多根钢筋作用下氯离子扩散与混凝土损伤的过程耦合分析方法.根据已有文献的试验结果,验证了提出的过程耦合分析方法的有效性.基于过程耦合分析方法,讨论了外部氯离子环境、初期混凝土中氯离子掺入量及配筋率对钢筋混凝土结构使用状态的影响.模拟结果表明:钢筋混凝土结构设计时应根据外部环境控制初期氯离子的掺入量;对于外部氯离子含量高的地区,表面出现损伤现象的结构应尽早采取维护措施;氯离子环境下,配筋率的提高会加速钢筋混凝土结构表面裂纹的出现.因此,设计处于高氯离子含量环境中的钢筋混凝土结构应考虑服役过程中结构渐近退化对其承载能力的影响.
Abstract:
Numerical simulation was performed to study the mutually-reinforcing and nonlinear coupling process between chloride ion erosion and corrosion damage evolving in concrete. Based on subroutine packaged into software ABAQUS, a process coupling analysis method was developed to ensure the reasonably efficient implementations of the nonlinear iterative algorithm. With the reported experimental results in literatures, the developed method was verified. Using the developed coupling analysis method, the service state of reinforced concrete(RC)structures affected by environmental chloride ion content, initial mixed chloride ion content and reinforcement ratio was analyzed. Simulation results show that the initial mixed chloride content in RC structures is controlled by considering the environmental chloride content, and earlier protection steps are carried out on the concrete structures in high environmental chloride content. The results also show that the increase of the reinforcement ratio results in premature surface cracking of RC structures in high chloride environment. During the design of RC structures under seriously chloride attacking conditions, effects of structural deterioration in its service time on the structural bearing capacity are considered.

参考文献/References:

[1] Michel A, Solgaard A O S, Geiker M R, et al. Modeling formation of cracks in concrete cover due to reinforcement corrosion[C]// 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures. Jeju Island,Korea, 2010:944-951.
[2] 施锦杰, 孙伟. 电迁移加速氯盐传输作用下混凝土中钢筋锈蚀[J]. 东南大学学报(自然科学版), 2011, 41(5):1042-1047.
  Shi Jinjie, Sun Wei. Investigation of steel corrosion induced by accelerated chloride migration in concrete[J]. Journal of Southeast University(Natural Science Edition), 2011, 41(5):1042-1047.(in Chinese)
[3] Tran K K, Nakamura H, Kunieda M, et al. Analysis of crack propagation behavior in concrete due to multi-rebar corrosion[J]. Journal of Structural Engineering, 2012, 58A: 844-853.
[4] O?bolt J, Or?anic F, Balabanic G. Modeling corrosion-induced damage of reinforced concrete elements with multiple-arranged reinforcement bars[J]. Materials and Corrosion, 2016,67(5):542-552. DOI:10.1002/maco.201508569.
[5] 郭力, 周陈凯, 张芹,等. 混凝土Lattice模型参数修正及钢筋混凝土锈胀破坏模拟[J]. 东南大学学报(自然科学版), 2015, 45(6):1140-1144. DOI:10.3969/j.issn.1001-0505.2015.06.021
Guo Li, Zhou Chenkai, Zhang Qin, et al. Parameter updating on Lattice model of concrete and simulation of corrosion damage in reinforced concrete[J]. Journal of Southeast University(Natural Science Edition),2015,45(6):1140-1144. DOI:10.3969/j.issn.1001-0505.2015.06.021. (in Chinese)
[6] Du Y G, Chan A H C, Clark L A, et al. Finite element analysis of cracking and delamination of concrete beam due to steel corrosion[J]. Engineering Structures, 2013, 56: 8-21. DOI:10.1016/j.engstruct.2013.04.005.
[7] Dong W, Murakami Y, Oshita H, et al. Influence of both stirrup spacing and anchorage performance on residual strength of corroded RC beams[J]. Journal of Advanced Concrete Technology, 2011, 9(3): 261-275. DOI:10.3151/jact.9.261.
[8] O?bolt J, Balabanic G, Sola E. Determination of critical anodic and cathodic areas in corrosion processes of steel reinforcement in concrete[J]. Materials and Corrosion, 2016,68(6):622-631. DOI:10.1002/maco.201609295.
[9] 张芹,郭力. 氯离子侵蚀下钢筋混凝土非线性锈胀破坏过程模拟[J]. 湖南大学学报(自然科学版), 2017, 44(5):44-52. DOI:10.16339/j.cnki.hdxbzkb.2017.05.006
Zhang Qin, Guo Li. Simulation of nonlinear corrosion damage process in reinforcement concrete under chloride environment[J]. Journal of Hunan University(Natural Science), 2017, 44(5):44-52. DOI:10.16339/j.cnki.hdxbzkb.2017.05.006(in Chinese)
[10] Gerard B, Marchand J. Influence of cracking on the diffusion properties of cement-based materials: Part Ⅰ: Influence of continuous cracks on the steady-state regime[J]. Cement and Concrete Research, 2000, 30(1):37-43. DOI:10.1016/s0008-8846(99)00201-x.
[11] Chen D, Mahadevan S. Chloride-induced reinforcement corrosion and concrete cracking simulation[J]. Cement and Concrete Composites, 2008, 30(3):227-238. DOI:10.1016/j.cemconcomp.2006.10.007.
[12] Val D V, Chernin L, Stewart M G. Experimental and numerical investigation of corrosion-induced cover cracking in reinforced concrete structures[J]. Journal of Structural Engineering, 2009, 135(4):376-385. DOI:10.1061/(asce)0733-9445(2009)135:4(376).
[13] Solgaard A O S, Michel A, Geiker M, et al. Concrete cover cracking due to uniform reinforcement corrosion[J]. Materials and Structures, 2013, 46(11):1781-1799. DOI:10.1617/s11527-013-0016-6.
[14] Jang B S, Oh B H. Effects of non-uniform corrosion on the cracking and service life of reinforced concrete structures[J]. Cement & Concrete Research, 2010, 40(9):1441-1450. DOI:10.1016/j.cemconres.2010.03.018.
[15] Zhao Y, Karimi A R, Wong H S, et al. Comparison of uniform and non-uniform corrosion induced damage in reinforced concrete based on a Gaussian description of the corrosion layer[J]. Corrosion Science, 2011, 53(9):2803-2814. DOI:10.1016/j.corsci.2011.05.017.
[16] Jung W Y, Yoon Y S, Sohn Y M. Predicting the remaining service life of land concrete by steel corrosion[J]. Cement and Concrete Research, 2003,33(5):663-677. DOI:10.1016/s0008-8846(02)01034-7.
[17] Takewaka K, Mastumoto S. Quality and cover thickness of concrete based on the estimation of chloride penetration in marine environments[J]. Aci Special Publication, 1988,109:381-400.
[18] Chen E, Leung C K Y. Finite element modeling of concrete cover cracking due to non-uniform steel corrosion[J]. Engineering Fracture Mechanics, 2015, 134:61-78. DOI:10.1016/j.engfracmech.2014.12.011.
[19] Alonso C, Andrade C, Rodriguez J, et al. Factors controlling cracking of concrete affected by reinforcement corrosion[J]. Materials and Structures, 1998, 31(7): 435-441. DOI:10.1007/bf02480466.
[20] 卫军, 张萌, 董荣珍,等. 钢筋锈蚀对混凝土梁破坏模式影响的试验研究[J]. 湖南大学学报(自然科学版), 2013, 40(10):15-21.
  Wei Jun, Zhang Meng, Dong Rongzhen, et al. Experimental research on the failure mode of concrete beam due to steel corrosion[J]. Journal of Hunan University(Natural Science), 2013, 40(10): 15-21.(in Chinese)
[21] 过镇海. 混凝土的强度和本构关系:原理与应用[M]. 北京:中国建筑工业出版社, 2004:80-86.

相似文献/References:

[1]孙国文,孙伟,张云升,等.预测氯离子在水泥基复合材料中有效扩散系数[J].东南大学学报(自然科学版),2011,41(2):376.[doi:10.3969/j.issn.1001-0505.2011.02.031]
 Sun Guowen,Sun Wei,Zhang Yunsheng,et al.Predicting effective chloride ion diffusion coefficient in cement-based composite materials[J].Journal of Southeast University (Natural Science Edition),2011,41(3):376.[doi:10.3969/j.issn.1001-0505.2011.02.031]

备注/Memo

备注/Memo:
收稿日期: 2017-10-09.
作者简介: 张芹(1987—),女,博士生;郭力(联系人),男,博士,教授,博士生导师,lguo@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51578142, 51478108).
引用本文: 张芹,郭力,郭小明.氯离子环境下钢筋混凝土构件多筋锈胀破坏模式[J].东南大学学报(自然科学版),2018,48(3):528-536. DOI:10.3969/j.issn.1001-0505.2018.03.022.
更新日期/Last Update: 2018-05-20