[1]夏威夷,冯亚松,杜延军,等.羟基磷灰石基固化剂异位固化稳定化修复重金属污染场地试验研究[J].东南大学学报(自然科学版),2018,48(3):549-556.[doi:10.3969/j.issn.1001-0505.2018.03.025]
 Xia Weiyi,Feng Yasong,Du Yanjun,et al.Performance of hydroxyapatite based binder in ex-situ solidification/stabilization of heavy metal contaminated site soil[J].Journal of Southeast University (Natural Science Edition),2018,48(3):549-556.[doi:10.3969/j.issn.1001-0505.2018.03.025]
点击复制

羟基磷灰石基固化剂异位固化稳定化修复重金属污染场地试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第3期
页码:
549-556
栏目:
土木工程
出版日期:
2018-05-20

文章信息/Info

Title:
Performance of hydroxyapatite based binder in ex-situ solidification/stabilization of heavy metal contaminated site soil
作者:
夏威夷1冯亚松1杜延军1李发生2郭观林2李春萍3阎秀兰4任伟伟1张黎明1
1东南大学江苏省城市地下工程与环境安全重点实验室, 南京 210096; 2中国环境科学研究院, 北京 100012; 3北京建筑材料科学研究总院, 北京 100041; 4中国科学院地理科学与资源研究所, 北京 100101
Author(s):
Xia Weiyi1 Feng Yasong1 Du Yanjun1 Li Fasheng2 Guo Guanlin2Li Chunping3 Yan Xiulan4 Ren Weiwei1 Zhang Liming1
1Jiangsu Key Laboratory of Urban Underground Engineering and Environmental Safety, Southeast University, Nanjing 210096, China
2Chinese Research Academy of Environmental Sciences, Beijing 100012, China
3Beijing Building Materials Academy of Science Research, Beijing 100041, China
4Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
关键词:
重金属 污染场地 异位固化稳定化 贯入阻力 浸出毒性
Keywords:
heavy metal contaminated site ex-situ solidification and stabilization penetration resistance leachability
分类号:
TU47;TU411
DOI:
10.3969/j.issn.1001-0505.2018.03.025
摘要:
为研究新型羟基磷灰石基固化剂SPC对污染土的真实修复效果,以甘肃省某Pb,Zn和Cd污染场地为对象,设计采用掺量8%的SPC进行现场异位固化稳定化(S/S)技术修复.修复前后进行现场动力锥贯入测试以分析土层贯入阻力值.同时钻取现场土样进行多组室内试验如土含水率、pH值、单一及连续浸提试验,以评价污染土和固化土理化、重金属浸出毒性、重金属形态分布特性之间的差异情况,并讨论SPC固定Pb,Zn和Cd的机理.结果显示:SPC固化污染土呈现中度碱性(pH=8.86~9.41),其含水率低于未固化污染土;同时SPC修复能够有效固定土中弱酸提取态Pb,Zn和Cd,使其转为更为稳定的残渣态,进而显著降低了污染土的重金属浸出毒性;此外,SPC异位S/S技术可明显提高污染土贯入阻力,不同深度处相较于修复前的贯入阻力增幅最高可达4.7倍.
Abstract:
To study the actual effects on new hydroxyapatite based binder superphosphate and calciumoxide(SPC)for contaminated soils remediation, ex-situ solidification/stabilization(S/S)using 8% SPC was performed on a Pb, Zn and Cd contaminated sites in Gansu Province of China. Before and after remediation, field dynamic cone penetration tests were conducted by measuring soil penetration resistance(Rs). Additionally, a series of laboratory tests, including water content, soil pH, single, and sequential extraction procedures were performed on core samples to investigate the differences in physicochemical, metal leachability and metal speciation properties between untreated and stabilized soils. The immobilization mechanisms of Pb, Zn and Cd by SPC were also discussed. The results show that SPC stabilized soils have moderately alkalinity with soil pH ranges from 8.86 to 9.41, and lower water contents than untreated soils; SPC remediation significantly transforms the exchangeable fractions of Pb, Zn and Cd into more, insoluble residual fractions, resulting in the lower metal leachability. Furthermore, ex-situ SPC S/S can significantly increase Rs, and the maximum increase is 4.7 times higher than the untreated soils.

参考文献/References:

[1] Song F,Gu L,Zhu N,et al,Leaching behavior of heavy metals from sewage sludge solidified by cement-based binders[J]. Chemosphere, 2013, 92(4): 344-350.DOI:10.1016/j.chemosphere.2013.01.022.
[2] United States Environmental Protection Agency. Solidification/stabilization used at superfund sites[R]. Washington DC: United States Environmental Protection Agency’s Office of Solid Waste and Emergency Response,2000.
[3] Li X D, Poon C S, Sun H, et al. Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials[J]. Journal of Hazardous Materials, 2001, 82(3): 215-230.DOI:10.1016/s0304-3894(00)00360-5,
[4] Netpradit S,Thiravetyan P,Towprayoon S. Application of ‘waste’metal hydroxide sludge for adsorption of azo reactive dyes[J]. Water Research, 2003,37(4): 763-772.DOI:10.1016/s0043-1354(02)00375-5.
[5] 裴守宇,徐鹏.水泥工业的环境污染与防治[J].环境科学与技术,2003,26(Z1): 66-68.
  Pei Shouyu, Xu Peng. Environment pollution and control in cement industry[J]. Environmental Science and Technology, 2003, 26(Z1): 66-68.(in Chinese)
[6] Du Y J, Jiang N J, Liu S Y, et al. Engineering properties and microstructural characteristics of cement-stabilized zinc-contaminated kaolin[J]. Canadian Geotechnical Journal, 2013, 51(3): 289-302. DOI:10.1139/cgj-2013-0177.
[7] Xia W Y, Feng Y S, Jin F, et al. Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite based binder[J]. Construction and Building Materials, 2017, 156: 199-207.DOI:10.1016/j.conbuildmat.2017.08.149.
[8] 陈蕾.水泥固化稳定重金属污染土机理与工程特性研究[D].南京: 东南大学交通学院,2010.
[9] Suman Raj D S, Aparna C, Rekha P, et al. Stabilization and solidification technologies for the remediation of contaminated soils and sediments—An overview[J]. Land Contamination & Reclamation, 2005, 13(1): 23-48.DOI:10.2462/09670513.645.
[10] Rauret G, López-Sánchez J F, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1999, 1(1): 57-61. DOI:10.1039/a807854h.
[11] Wang X S, Qin Y. Leaching characteristics of heavy metals and as from two urban roadside soils[J]. Environmental Monitoring and Assessment, 2007, 132(1/2/3): 83-92.DOI:10.1007/s10661-006-9504-2.
[12] 董黎静,朱志良,仇雁翎,等.羟基磷灰石及其复合材料对重金属的吸附研究进展[J].化学通报,2013,76(5): 405-410.DOI:10.14159/j.cnki.0441-3776.2013.05.015.
Dong Lijing, Zhu Zhiliang, Qiu Yanling, et al. Advance in research of heavy metals removal by hydroxyapatite and its composite[J]. Chemistry, 2013,76(5): 405-410.DOI:10.14159/j.cnki.0441-3776.2013.05.015. (in Chinese)
[13] Wang X, Ma J, Wang Y, et al. Reinforcement of calcium phosphate cements with phosphorylated chitin[J]. Chinese Journal of Polymer Science, 2002, 20(4): 325-332.
[14] Lombi E, Hamon R E, McGrath S P, et al. Lability of Cd, Cu, and Zn in polluted soils treated with lime,beringite,and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques[J]. Environmental Science & Technology, 2003, 37(5): 979-984.DOI:10.1021/es026083w.
[15] Zhu R, Yu R, Yao J, et al, Removal of Cd+2 from aqueous solutions by hydroxyapatite[J]. Catalysis Today, 2008, 139(1/2): 94-99.DOI:10.1016/j.cattod.2008.08.011.
[16] Matusik J,Bajda T,Manecki M. Immobilization of aqueous cadmium by addition of phosphates[J]. Journal of Hazardous Materials,2008, 152(3): 1332-1339.DOI:10.1016/j.jhazmat.2007.08.010.
[17] Barralet J E, Lilley K J, Grover L M, et al. Cements from nanocrystalline hydroxyapatite[J]. Journal of Materials Science: Materials in Medicine, 2004, 15(4): 407-411.DOI:10.1023/b:jmsm.0000021111.48592.ab.
[18] Roeselers G, van Loosdrecht M C M. Microbial phytase-induced calcium-phosphate precipitation—A potential soil stabilization method[J]. Folia Microbiologica, 2010, 55(6): 621-624.DOI:10.1007/s12223-010-0099-1.
[19] 金靖,李俊虎,李雪刚.生石膏加固软土的试验研究[J]. 建筑技术,2014,45(4): 349-352.DOI:10.13731/j.issn.1000-4726.2014.04.016.
Jin Jing, Li Junhu, Li Xuegang. Test research of gypsum reinforced soft soil[J]. Architecture Technology, 2014,45(4): 349-352.DOI:10.13731/j.issn.1000-4726.2014.04.016. (in Chinese)

相似文献/References:

[1]冉文静,傅大放.黑麦草修复模拟重金属污染土壤的化学强化及其潜在风险[J].东南大学学报(自然科学版),2011,41(4):793.[doi:10.3969/j.issn.1001-0505.2011.04.026]
 Ran Wenjing,Fu Dafang.Effects and risk of chemical enhancement measures to phytoremediation using Lolium L. for artificially polluted soil with heavy metals[J].Journal of Southeast University (Natural Science Edition),2011,41(3):793.[doi:10.3969/j.issn.1001-0505.2011.04.026]
[2]钱春香,王明明,许燕波.土壤重金属污染现状及微生物修复技术研究进展[J].东南大学学报(自然科学版),2013,43(3):669.[doi:10.3969/j.issn.1001-0505.2013.03.041]
 Qian Chunxiang,Wang Mingming,Xu Yanbo.Current situation of soil contamination by heavy metals and research progress in bio-remediation technique[J].Journal of Southeast University (Natural Science Edition),2013,43(3):669.[doi:10.3969/j.issn.1001-0505.2013.03.041]
[3]董颖博,林海,王亮.柠檬酸改性酒糟对重金属镉的吸附性能[J].东南大学学报(自然科学版),2016,46(1):165.[doi:10.3969/j.issn.1001-0505.2016.01.027]
 Dong Yingbo,Lin Hai,et al.Adsorption properties of distillers’ grains modified by citric acid on heavy metal Cd(Ⅱ)[J].Journal of Southeast University (Natural Science Edition),2016,46(3):165.[doi:10.3969/j.issn.1001-0505.2016.01.027]

备注/Memo

备注/Memo:
收稿日期: 2017-09-25.
作者简介: 夏威夷(1989—),男,博士生;杜延军(联系人),男,博士,教授,博士生导师,duyanjun@seu.edu.cn.
基金项目: 国家高技术研究发展计划(863计划)资助项目(2013AA06A206)、国家自然科学基金重点资助项目(41330641)、国家自然科学基金资助项目(41472258)、江苏省自然科学基金资助项目(BK2012022)、江苏省环保科研课题资助项目(2016031).
引用本文: 夏威夷,冯亚松,杜延军,等.羟基磷灰石基固化剂异位固化稳定化修复重金属污染场地试验研究[J].东南大学学报(自然科学版),2018,48(3):549-556. DOI:10.3969/j.issn.1001-0505.2018.03.025.
更新日期/Last Update: 2018-05-20