[1]曹玖新,崔桂旗,冯雪艳,等.社交网络中基于成本的广告投放策略[J].东南大学学报(自然科学版),2018,48(4):583-589.[doi:10.3969/j.issn.1001-0505.2018.04.001]
 Cao Jiuxin,Cui Guiqi,Feng Xueyan,et al.Cost-based advertising strategy in social networks[J].Journal of Southeast University (Natural Science Edition),2018,48(4):583-589.[doi:10.3969/j.issn.1001-0505.2018.04.001]
点击复制

社交网络中基于成本的广告投放策略()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第4期
页码:
583-589
栏目:
计算机科学与工程
出版日期:
2018-07-20

文章信息/Info

Title:
Cost-based advertising strategy in social networks
作者:
曹玖新崔桂旗冯雪艳闵绘宇
东南大学计算机科学与工程学院, 南京 211189
Author(s):
Cao Jiuxin Cui Guiqi Feng Xueyan Min Huiyu
School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
关键词:
社交网络 广告投放 影响最大化 成本 平均概率
Keywords:
social networks advertising influence maximization cost average probability
分类号:
TP301.6
DOI:
10.3969/j.issn.1001-0505.2018.04.001
摘要:
为了用有限的广告预算选择合适的初始种子节点以达到尽可能好的广告效应,首先根据节点的粉丝数量对节点成本进行建模,并利用节点对信息的偏好程度和节点间的关注度对影响概率建模,然后根据影响概率和节点成本提出节点平均概率的概念,设计种子节点选择算法AvePA.该算法根据平均概率选择种子节点,其中平均概率综合考虑了节点的成本、出度大小、节点对其粉丝的影响力以及节点与所投放广告之间的相似度多个因素.据此实现社交网络中基于成本的广告投放原型系统,并在6个数据集上进行了对比实验.结果表明:引入覆盖距离可以有效避免影响范围的重叠,扩大影响范围;随着广告预算的增加,综合考虑影响效果和时间效率,AvePA算法的整体性能优于其他算法.
Abstract:
The purpose of this research is to choose an appropriate initial seed-nodes to maximize the advertising effect based on limited budget. First, a node’s cost model is constructed based on the node’s fans number. And, the influence probability of a node is defined by combining the node’s preference of information and the attention degree from other nodes. Then, by considering the node’s cost and influence probability, the concept of a node’s average probability is proposed, and the corresponding algorithm, average probability algorithm(AvePA), is designed. Seed-nodes are selected by the AvePA algorithm according to the node’s average probability that takes into account the cost, out-degree, influence of the node and similarity between the node and the related advertising. Based on this, a cost-based advertisement delivery prototype system was designed and implemented, and then comparison experiments were conducted based on six datasets. The results show that the coverage distance is effective to avoid overlapping scope problem and extend influence scope. Considering the effect and time efficiency, AvePA presents better performance than compared algorithms with the increase of the advertising budget.

参考文献/References:

[1] Lazer D, Pentland A, Adamic L, et al. Computational social science[J]. Science, 2009, 323(1):721-723.DOI:10.1126/science.1167742.
[2] Domingos P, Richardson M. Mining the network value of customers[C]// Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, USA, 2001: 57-66. DOI:10.1145/502512.502525.
[3] Kempe D, Kleinberg J, Tardos É. Maximizing the spread of influence through a social network[C]// Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Washington, DC, USA, 2003: 137-146. DOI:10.1145/956755.956769.
[4] Singer Y. How to win friends and influence people, truthfully: Influence maximization mechanisms for social networks[C]// Proceedings of the Fifth ACM International Conference on Web Search and Data Mining. Washington, DC, USA, 2012: 733-742. DOI:10.1145/2124295.2124381.
[5] Leskovec J, Krause A, Guestrin C, et al. Cost-effective outbreak detection in networks[C]// Proceedings of the Thirteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, CA, USA, 2007: 420-429. DOI:10.1145/1281192.1281239.
[6] Khuller S, Moss A, Naor J. The budgeted maximum coverage problem[J]. Information Processing Letters, 1999, 70(1): 39-45. DOI:10.1016/s0020-0190(99)00031-9.
[7] Zhan Q, Yang H, Wang C, et al. CPP-SNS: A solution to influence maximization problem under cost control[C]// IEEE 25th International Conference on Tools with Artificial Intelligence. Herndon, VA, USA,2013: 849-856. DOI:10.1109/ictai.2013.129.
[8] Li F H, Li C T, Shan M K. Labeled influence maximization in social networks for target marketing[C]// Proceedings of 2011 IEEE International Conference on Privacy, Security, Risk and Trust and IEEE International Conference on Social Computing. Changsha, China, 2011: 560-563. DOI:10.1109/passat/socialcom.2011.152.
[9] Tang J, Sun J, Wang C, et al. Social influence analysis in large-scale networks[C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009: 807-815. DOI:10.1145/1557019.1557108.
[10] Barbieri N, Bonchi F, Manco G. Topic-aware social influence propagation models[C]// 2012 IEEE 12th International Conference on Data Mining. Brussels, Belgium, 2012: 81-90. DOI:10.1109/icdm.2012.122.
[11] Srinivasan B V, Anandhavelu N, Dalal A, et al. Topic-based targeted influence maximization[C]// 2014 Sixth International Conference on Communication Systems and Networks. Bangalore, India, 2014: 1-6.DOI:10.1109/comsnets.2014.6734935.
[12] Aslay C, Barbieri N, Bonchi F, et al. Online topic-aware influence maximization queries[C]// Proceedings of the 17th International Conference on Extending Database Technology. Athens, Greece, 2014: 295-306.
[13] Chen W, Lin T, Yang C. Real-time topic-aware influence maximization using preprocessing[J]. Computational Social Networks, 2016, 3(1): 1-19. DOI:10.1186/s40649-016-0033-z.
[14] Chen S, Fan J, Li G L, et al. Online topic-aware influence maximization[J]. Proceedings of the VLDB Endowment, 2015, 8(6): 666-677. DOI:10.14778/2735703.2735706.
[15] Li Y C, Zhang D X, Tan K L. Real-time targeted influence maximization for online advertisements[J]. Proceedings of the VLDB Endowment, 2015, 8(10): 1070-1081. DOI:10.14778/2794367.2794376.
[16] Chen W, Wang Y, Yang S. Efficient influence maximization in social networks[C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009: 199-207. DOI:10.1145/1557019.1557047.
[17] 曹玖新,董丹,徐顺,等. 一种基于k-核的社会网络影响最大化算法[J]. 计算机学报,2015, 38(2): 238-248. DOI:10.3724/SP.J.1016.2015.00238.
Cao Jiuxin,Dong Dan, Xu Shun, et al. A k-core based algorithm for influence maximization in social networks[J]. Chinese Journal of Computers, 2015, 38(2): 238-248. DOI:10.3724/SP.J.1016.2015.00238. (in Chinese)
[18] Zhang Y, Zhou J, Cheng J. Preference-based top-k influential nodes mining in social networks[C]// 2011 IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications. Changsha, China, 2011: 1512-1518. DOI:10.1109/trustcom.2011.209.
[19] Cao J X, Zhou T, Dong D, et al. Attribute-based influence maximization in social networks[C]// International Conference on Web Information Systems Engineering. Shanghai, China, 2016: 3-18. DOI:10.1007/978-3-319-48740-3_1.
[20] 刘群, 李素建. 基于《知网》的词汇语义相似度计算[C/OL]//第3届汉语词汇语义学研讨会.中国台北, 2002. https://wenku.baidu.com/view/b213af9951e79b8968022660.html.
[21] Ahn Y Y, Han S, Kwak H, et al. Analysis of topological characteristics of huge online social networking services[C]// Proceedings of the 16th International Conference on World Wide Web. ACM Press, 2007: 835-844.DOI:10.1145/1242572.1242685.

相似文献/References:

[1]刘锡文,蒋俊杰.社交网络中基于用户投票的推荐机制[J].东南大学学报(自然科学版),2013,43(2):301.[doi:10.3969/j.issn.1001-0505.2013.02.014]
 Liu Xiwen,Jiang Junjie.Recommendation mechanism based on user voting in the social network[J].Journal of Southeast University (Natural Science Edition),2013,43(4):301.[doi:10.3969/j.issn.1001-0505.2013.02.014]
[2]曹玖新,闵绘宇,徐顺,等.基于启发式和贪心策略的社交网络影响最大化算法[J].东南大学学报(自然科学版),2016,46(5):950.[doi:10.3969/j.issn.1001-0505.2016.05.009]
 Cao Jiuxin,Min Huiyu,Xu Shun,et al.Mixed heuristic and greedy strategies based algorithm for influence maximization in social networks[J].Journal of Southeast University (Natural Science Edition),2016,46(4):950.[doi:10.3969/j.issn.1001-0505.2016.05.009]
[3]张琳,张进.基于PPIN的社交网络推荐系统[J].东南大学学报(自然科学版),2017,47(3):478.[doi:10.3969/j.issn.1001-0505.2017.03.011]
 Zhang Lin,Zhang Jin.Social network recommendation system based on PPIN[J].Journal of Southeast University (Natural Science Edition),2017,47(4):478.[doi:10.3969/j.issn.1001-0505.2017.03.011]
[4]陈红松,王钢,张鹏.基于Hadoop云平台的新浪微博社交网络关键节点挖掘算法[J].东南大学学报(自然科学版),2018,48(4):590.[doi:10.3969/j.issn.1001-0505.2018.04.002]
 Chen Hongsong,Wang Gang,Zhang Peng.Key nodes mining algorithm in Sina Weibo social network based on Hadoop cloud platform[J].Journal of Southeast University (Natural Science Edition),2018,48(4):590.[doi:10.3969/j.issn.1001-0505.2018.04.002]

备注/Memo

备注/Memo:
收稿日期: 2018-01-17.
作者简介: 曹玖新(1967—),男,博士,教授,博士生导师,jx.cao@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(61772133, 61472081, 61402104, 61370207, 61370208, 61300024)、东南大学计算机网络和信息集成教育部重点实验室资助项目(93k-9).
引用本文: 曹玖新,崔桂旗,冯雪艳,等.社交网络中基于成本的广告投放策略[J].东南大学学报(自然科学版),2018,48(4):583-589. DOI:10.3969/j.issn.1001-0505.2018.04.001.
更新日期/Last Update: 2018-07-20