[1]曾一平,周立初,闵学刚,等.大形变铁素体钢丝α→γ→α相变织构遗传现象[J].东南大学学报(自然科学版),2018,48(4):619-628.[doi:10.3969/j.issn.1001-0505.2018.04.006]
 Zeng Yiping,Zhou Lichu,Min Xuegang,et al.Texture inheritance during α→γ→α phase transformation in high strain deformed ferrite steel wire[J].Journal of Southeast University (Natural Science Edition),2018,48(4):619-628.[doi:10.3969/j.issn.1001-0505.2018.04.006]
点击复制

大形变铁素体钢丝α→γ→α相变织构遗传现象()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第4期
页码:
619-628
栏目:
材料科学与工程
出版日期:
2018-07-20

文章信息/Info

Title:
Texture inheritance during α→γ→α phase transformation in high strain deformed ferrite steel wire
作者:
曾一平1周立初1闵学刚2方峰1蒋建清13
1东南大学材料与科学工程学院, 南京 211189; 2江苏宝钢精密钢丝有限公司, 海门 226100; 3南京林业大学材料科学与工程学院, 南京 210037
Author(s):
Zeng Yiping1 Zhou Lichu1 Min Xuegang2 Fang Feng1 Jiang Jianqing13
1School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2Jiangsu Baosteel Fine Wire & Cord Co., Ltd., Haimen 226100, China
3School of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
关键词:
铁素体钢丝 奥氏体化热处理 遗传织构 变体选择
Keywords:
ferrite steel wire austenitizing heat treatment inherited texture variant selection
分类号:
TG142
DOI:
10.3969/j.issn.1001-0505.2018.04.006
摘要:
利用扫描电子显微镜(SEM)和电子背散射衍射技术(EBSD)研究了冷拔铁素体钢丝经奥氏体化热处理后的遗传织构,以及相变过程中晶体位向变化的特点.结果表明:随着应变量的上升,大形变冷拔铁素体钢丝的〈110〉丝织构强度上升;奥氏体化热处理后,等轴状铁素体组织保留了部分〈110〉丝织构,发生织构遗传;遗传织构强度受到热处理工艺参数影响,提高奥氏体化保温温度或延长保温时间,能使择优的奥氏体晶粒发生长大,进而使相变后铁素体〈110〉织构强度增加.经过α→γ→α相变后,组织中50°与60°晶界所占比例明显高于理论分布,这些晶界符合K-S关系下同一密排面变体或孪晶间位向关系,说明发生变体选择现象,相变倾向于以同一密排面上变体或孪晶的形式发生,这有利于织构的遗传及遗传织构稳定性的提升.
Abstract:
The inherited texture after heat-treatment and the changes of the crystal orientation of ferrite grains of cold drawn ferrite steel wires during transformation were investigated by using SEM(scanning electron microscopy)and EBSD(electron backscatter diffraction). The results show that the intensity of 〈110〉 fiber ferrite texture is enhanced with the increase of cold drawing strains. Cold drawn ferrite 〈110〉 texture is partially conserved after austenitizing heat treatment, i.e. texture inheritance. The intensity of inherited texture is influenced by heat treatment parameters. With the increase of austenitizing temperature and time, the preferred austenite crystal tends to grow up, and result in the increase of intensity of 〈110〉 fibre inherited texture. After α→γ→α transformation, the occurrence of grain boundaries with 50° and 60° misorientation is in a significantly higher proportion than the theoretical proportion. The 50° and 60° boundaries conform to the relationship between variants in the same close-packed planes or the twin relationship under the K-S relation. Thus, variant selection occurs preferably in the form of twins or variants in the same close-packed plane, which is conducive to the inheritance of texture and the stability of the inherited texture.

参考文献/References:

[1] Ray R K, Jonas J J. Transformation textures in steels[J]. Int Mater Rev, 1990, 35(1): 927-942.
[2] Butrón-Guillén M P, Costa Viana C S, Jonas J J. A variant selection model for predicting the transformation texture of deformed austenite[J]. Metall Mater Trans A, 1997, 28(9): 1755-1768. DOI: 10.1007/s11661-997-0107-5.
[3] Brückner G, Gottstein G. Transformation textures during diffusional α→γ→α phase transformations in ferritic steels[J]. ISIJ International, 2001, 41(5): 468-477. DOI:10.2355/isijinternational.41.468.
[4] Brückner G, Pospiech J, Seidl I, et al. Orientation correlation during diffusional α → γ phase transformation in a ferritic low carbon steel[J]. Scripta Materialia, 2001, 44(11): 2635-2640. DOI:10.1016/s1359-6462(01)00956-3.
[5] Lischewski I, Gottstein G. Nucleation and variant selection during the α-γ-α phase transformation in microalloyed steel[J]. Acta Materialia, 2011, 59(4): 1530-1541. DOI:10.1016/j.actamat.2010.11.017.
[6] Tomida T, Wakita M, Yasuyama M, et al. Memory effects of transformation textures in steel and its prediction by the double Kurdjumov-Sachs relation[J]. Acta Materialia, 2013, 61(8): 2828-2839. DOI:10.1016/j.actamat.2013.01.015.
[7] Zelin M. Microstructure evolution in pearlitic steels during wire drawing[J]. Acta Materialia, 2002, 50(17): 4431-4447. DOI:10.1016/s1359-6454(02)00281-1.
[8] 张晓丹, Godfrey A, 刘伟, 等. 珠光体钢丝冷拉拔过程中微观组织及铁素体微区取向与织构演变[J]. 金属学报, 2010, 46(2): 141-146.
  Zhang Xiaodan, Godfrey A, Liu Wei, et al. Evolutions of microstructure and ferritic micro-orientation and texture in a pearlitic steel wire during cold drawing[J]. Acta Metallurgica Sinica, 2010, 46(2): 141-146.(in Chinese)
[9] Fang F, Zhou L C, Hu X J, et al. Microstructure and mechanical properties of cold-drawn pearlitic wires affect by inherited texture[J]. Materials & Design, 2015, 79: 60-67. DOI:10.1016/j.matdes.2015.04.036.
[10] 刘沿东, 蒋奇武, 赵骧, 等. 拉拔过程中珠光体钢丝帘线的织构分析与模拟[J]. 金属学报, 2002, 38(11): 1215-1218. DOI:10.3321/j.issn:0412-1961.2002.11.016.
Liu Yandong, Jiang Qiwu, Zhao Xiang, et al. Texture analysis and simulation of pearltic wires during drawing[J]. Acta Metallurgica Sinica, 2002, 38(11): 1215-1218. DOI:10.3321/j.issn:0412-1961.2002.11.016. (in Chinese)
[11] Fang F, Zhao Y F, Zhou L C, et al. Texture inheritance of cold drawn pearlite steel wires after austenitization[J]. Materials Science and Engineering: A, 2014, 618: 505-510. DOI:10.1016/j.msea.2014.09.061.
[12] Zhou L C, Zhao Y F, Hu X J, et al. Effect of austenitizing on texture redistribution of cold drawn pearlitic steel wire[J].Chinese Journal of Materials Research,2014,28(8): 615-620.
[13] Liu Y D, Zhang Y D, Tidu A, et al. 〈110〉 fiber texture evolution of ferrite wires during drawn-torsion and drawn-annealing-torsion process[J]. Journal of Materials Science & Technology, 2012, 28(11): 1010-1014. DOI:10.1016/s1005-0302(12)60166-2.
[14] Fang F, Wang L P, Zhou L C, et al. Application of texture inheritance on manufacturing ultra-high strength pearlitic steel wire[J]. Materials Science and Technology, 2017, 34(7): 766-771. DOI:10.1080/02670836.2017.1393999.
[15] Nolze G. Characterization of the fcc/bcc orientation relationship by EBSD using pole figures and variants[J]. Zeitschrift für Metallkunde, 2004, 95(9): 744-755. DOI:10.3139/146.018017.
[16] Nolze G. Improved determination of fcc/bcc orientation relationships by use of high-indexed pole figures[J]. Crystal Research and Technology, 2006, 41(1): 72-77. DOI:10.1002/crat.200410533.
[17] Jones A, Walker B. Structural state of austenite during continuous hot strip mill rolling[J]. Met Sci, 1974, 8(1): 397-406.
[18] Chapellier P, Ray R K, Jonas J J. Prediction of transformation textures in steels[J]. Acta Metall Mater, 1990, 38(8): 1475-1490. DOI: 10.1016/0956-7151(90)90116-x.
[19] Humbert M, Gardiola B, Esling C, et al. Modelling of the variant selection mechanism in the phase transformation of HSLA steel produced by compact strip production[J]. Acta Materialia, 2002, 50(7): 1741-1747. DOI:10.1016/s1359-6454(02)00023-x.
[20] Gey N, Humbert M. Specific analysis of EBSD data to study the texture inheritance due to the β→α phase transformation[J]. J Mater Sci, 2003, 38(6): 1289-1294. DOI:10.1023/A:1022842712172.
[21] Humbert M, Wagner F, Moustahfid H, et al. Determination of the orientation of a parent β grain from the orientations of the inherited α plates in the phase transformation from body-centred cubic to hexagonal close packed[J]. Journal of Applied Crystallography, 1995, 28(5): 571-576. DOI:10.1107/s0021889895004067.
[22] Morito S,Tanaka H,Konishi R,et al.The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Materialia,2003,51(6): 1789-1799. DOI:10.1016/S1359-6454(02)00577-3.
[23] King A D, Bell T. Crystallography of grain boundary proeutectoid ferrite[J]. Metallurgical Transactions A, 1975, 6(7): 1419-1429. DOI:10.1007/Bf02641934.
[24] Lee J K, Barnett D M, Aaronson H I. The elastic strain energy of coherent ellipsoidal precipitates in anisotropic crystalline solids[J]. Metallurgical Transactions A, 1977,8(6): 963-970. DOI:10.1007/BF02661580.
[25] Yang P, Lu F Y, Meng L, et al. Study on axiotaxy in high manganese TRIP steel by EBSD[J]. Acta Metallurgica Sinica, 2009, 45(12): 1409-1413.
[26] Dunn C G, Daniels F W, Bolton M J. Measurement of relative interface energies in twin related crystals[J]. JOM, 1950, 2(2): 368-377. DOI:10.1007/bf03399014.
[27] Ratanaphan S, Olmsted D L, Bulatov V V, et al. Grain boundary energies in body-centered cubic metals[J]. Acta Mater, 2015, 88: 346-354. DOI: 10.1016/j.actamat.2015.01.069.
[28] Bate P, Hutchinson B. The effect of elastic interactions between displacive transformations on textures in steels[J]. Acta Materialia, 2000, 48(12): 3183-3192. DOI:10.1016/s1359-6454(00)00106-3.
[29] Walentek A, Seefeldt M, Verlinden B, et al. Investigation of pearlite structure by means of electron backscatter diffraction and image analysis of SEM micrographs with an application of the Hough transform[J]. Materials Science and Engineering: A, 2008, 483-484: 716-718. DOI:10.1016/j.msea.2006.12.171.
[30] Guo N, Liu Q. Back-scattered electron imaging combined with EBSD technique for characterization of pearlitic steels[J]. Journal of Microscopy, 2012, 246(3): 221-228. DOI:10.1111/j.1365-2818.2011.03601.x.
[31] Caballero F G, Capdevila C, García de Andrés C. Modeling of the interlamellar spacing of isothermally formed pearlite in a eutectoid steel[J]. Scr Mater, 2000, 42(6): 537-542. DOI: 10.1016/S1359-6462(99)00398-X.
[32] Wittridge N J, Jonas J J, Root J H. A dislocation-based model for variant selection during the γ-to-α′ transformation[J]. Metall Mater Trans A, 2001, 32(4): 889-901. DOI: 10.1007/s11661-001-0346-9.

备注/Memo

备注/Memo:
收稿日期: 2018-01-28.
作者简介: 曾一平(1992—),男,硕士生;方峰(联系人),男,博士,教授,fangfeng@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51371050)、江苏省“六大”人才高峰资助项目(2015-XCL-004)、江苏省产学研前瞻性研究资助项目(BY2016076)、江苏省重点研发计划资助项目(BE2015097)、江苏省科技成果转化专项资助项目(BA2017112).
引用本文: 曾一平,周立初,闵学刚,等.大形变铁素体钢丝α→γ→α相变织构遗传现象[J].东南大学学报(自然科学版),2018,48(4):619-628. DOI:10.3969/j.issn.1001-0505.2018.04.006.
更新日期/Last Update: 2018-07-20