[1]张涛,韩吉田,赵红霞,等.基于联供系统的太阳能光热/光电利用试验研究[J].东南大学学报(自然科学版),2018,48(4):629-638.[doi:10.3969/j.issn.1001-0505.2018.04.007]
 Zhang Tao,Han Jitian,Zhao Hongxia,et al.Experimental study on solar photothermal utilization and solar photoelectricity conversion based on combined heating and power generation system[J].Journal of Southeast University (Natural Science Edition),2018,48(4):629-638.[doi:10.3969/j.issn.1001-0505.2018.04.007]
点击复制

基于联供系统的太阳能光热/光电利用试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第4期
页码:
629-638
栏目:
能源与动力工程
出版日期:
2018-07-20

文章信息/Info

Title:
Experimental study on solar photothermal utilization and solar photoelectricity conversion based on combined heating and power generation system
作者:
张涛12韩吉田1赵红霞1段炼1
1山东大学能源与动力工程学院, 济南 250061; 2泰安市中心医院, 泰安 271000
Author(s):
Zhang Tao12 Han Jitian1 Zhao Hongxia1 Duan Lian1
1School of Energy and Power Engineering, Shandong University, Jinan 250061, China
2Tai’an City Central Hospital, Taian 271000, China
关键词:
热电联供系统 燃料电池 太阳能光热利用 太阳能光电 试验研究
Keywords:
combined heating and power generation system fuel cells solar photothermal utilization solar photoelectricity experimental study
分类号:
TK519
DOI:
10.3969/j.issn.1001-0505.2018.04.007
摘要:
利用能源梯级应用的原理,将太阳能光电和燃料电池发电、太阳能光热和燃料电池余热回收利用相结合,构建太阳能耦合燃料电池的热电联供系统.搭建太阳能气象工作站、太阳能光电/质子交换膜燃料电池模拟器、低温太阳能集热器/空气源热泵热水系统试验平台,验证太阳能耦合燃料电池热电联供系统的可行性.试验结果表明:100 W太阳能光伏板平均充电电压值为11.73 V,平均充电功率为18.29 W,平均充电效率为14.22%,光伏板平均温度系数为0.076 3,PEMFC电能转化效率为22.06%.在低温太阳能集热器/空气源热泵热水系统中,储热水箱最低平均温度为44.24 ℃,管板集热器总平均热效率为35.43%,黑陶瓷集热器总平均热效率为40.21%.试验结果验证了太阳能耦合燃料电池热电联供系统的可行性,对有效解决我国能源紧缺、环境污染等问题具有重要的理论和工程应用价值.
Abstract:
The combined heating and power generation system of solar and fuel cells is constructed based on the principle of energy cascade utilization. It includes solar photoelectricity conversion and fuel cell power generation, solar photothermal utilization and fuel cell waste heat recycle. The feasibility for the combined heating and power generation system of solar and fuel cells is verified by an experimental platform which consists of solar weather stations, solar photovoltaic/proton exchange membrane fuel cell simulator, and low temperature solar collector/air source heat pump hot water system. The experimental results show that the average charge voltage is 11.73 V for 100 W solar photovoltaic panel, the average charge power is 18.29 W, the average charge efficiency is 14.22%, the average temperature coefficient is 0.076 3, and the power conversion efficiency of PEMFC(proton exchange membrane fuel cell)is 22.06%. In the low temperature solar collector and air source heat pump hot water system, the lowest average temperature of the water tank is 44.24 ℃,the overall average thermal efficiency is 35.43% for the tube plate heat collector, and the overall average thermal efficiency for the black ceramic collector is 40.21%. The experimental results verify the feasibility of the combined heating and power generation system for solar and fuel cells. It has important theory and engineering application values to solve China energy shortage, environmental pollution and other issues.

参考文献/References:

[1] 张涛,韩吉田,田瑞,等.全玻璃真空管太阳能热水器实验和模拟研究[J].东南大学学报(自然科学版),2015,45(5):897-902.DOI:10.3969/j.issn.1001-0505.2015.05.014.
Zhang Tao, Han Jitian, Tian Rui, et al. Experimental and simulation study for all-glass evacuated tube solar water heaters [J]. Journal of Southeast University(Natural Science Edition), 2015,45(5):897-902. DOI:10.3969/j.issn.1001-0505.2015.05.014. (in Chinese)
[2] 肖刚. 燃料电池技术 [M]. 北京:电子工业出版社, 2009:1-30.
[3] 徐腊梅. 质子交换膜燃料电池模拟与优化[M]. 北京:国防工业出版社, 2012: 20-100.
[4] Hajizadeh A, Golkar M A. Intelligent power management strategy of hybrid distributed generation system[J]. International Journal of Electrical Power & Energy Systems, 2007, 29(10): 783-795. DOI:10.1016/j.ijepes.2007.06.025.
[5] Kaldellis J K, Zafirakis D, Kaldelli E L, et al. Cost benefit analysis of a photovoltaic-energy storage electrification solution for remote islands[J]. Renewable Energy, 2009, 34(5): 1299-1311. DOI:10.1016/j.renene.2008.09.014.
[6] Görgün H. Dynamic modelling of a proton exchange membrane(PEM)electrolyzer[J]. International Journal of Hydrogen Energy, 2006, 31(1): 29-38. DOI:10.1016/j.ijhydene.2005.04.001.
[7] Hosseini M, Dincer I, Rosen M A. Hybrid solar-fuel cell combined heat and power systems for residential applications: Energy and exergy analyses[J]. Journal of Power Sources, 2013, 221: 372-380. DOI:10.1016/j.jpowsour.2012.08.047.
[8] Zhan Y D, Wang H, Zhu J G. Modelling and control of hybrid UPS system with backup PEM fuel cell/battery[J]. International Journal of Electrical Power & Energy Systems, 2012, 43(1): 1322-1331. DOI:10.1016/j.ijepes.2012.03.046.
[9] Duke R, Williams R, Payne A. Accelerating residential PV expansion: Demand analysis for competitive electricity markets[J]. Energy Policy, 2005, 33(15): 1912-1929. DOI:10.1016/j.enpol.2004.03.005.
[10] Chen X, Gong G C, Wan Z M, et al. Performance analysis of 5 kW PEMFC-based residential micro-CCHP with absorption chiller[J]. International Journal of Hydrogen Energy, 2015, 40(33): 10647-10657. DOI:10.1016/j.ijhydene.2015.06.139.
[11] Aki H, Taniguchi Y, Tamura I, et al. Fuel cells and energy networks of electricity, heat, and hydrogen: A demonstration in hydrogen-fueled apartments[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1204-1213. DOI:10.1016/j.ijhydene.2011.10.021.
[12] Giacoppo G, Barbera O, Carbone A, et al. 1.5 kWe HT-PEFC stack with composite MEA for CHP application[J]. International Journal of Hydrogen Energy, 2013, 38(26): 11619-11627. DOI:10.1016/j.ijhydene.2013.04.044.
[13] Calise F, Ferruzzi G, Vanoli L. Transient simulation of polygeneration systems based on PEM fuel cells and solar heating and cooling technologies[J]. Energy, 2012, 41(1): 18-30. DOI:10.1016/j.energy.2011.05.027.
[14] Bensmail S, Rekioua D, Azzi H. Study of hybrid photovoltaic/fuel cell system for stand-alone applications[J].International Journal of Hydrogen Energy, 2015, 40(39): 13820-13826. DOI:10.1016/j.ijhydene.2015.04.013.
[15] Barelli L, Bidini G, Gallorini F, et al. Dynamic analysis of PEMFC-based CHP systems for domestic application[J]. Applied Energy, 2012, 91(1): 13-28. DOI:10.1016/j.apenergy.2011.09.008.
[16] Guo Y F, Chen H C, Wang F C. The development of a hybrid PEMFC power system[J]. International Journal of Hydrogen Energy, 2015, 40(13): 4630-4640. DOI:10.1016/j.ijhydene.2015.01.169.
[17] Musio F, Tacchi F, Omati L, et al. PEMFC system simulation in MATLAB-Simulink? environment[J].International Journal of Hydrogen Energy, 2011, 36(13): 8045-8052. DOI:10.1016/j.ijhydene.2011.01.093.

备注/Memo

备注/Memo:
收稿日期: 2018-01-02.
作者简介: 张涛(1974—),男,博士,工程师;韩吉田(联系人),男,博士,教授,博士生导师,jthan@sdu.edu.cn.
基金项目: 国家自然科学基金资助项目(51376110)、国家自然科学基金国际(地区)合作交流资助项目(41761144067).
引用本文: 张涛,韩吉田,赵红霞,等.基于联供系统的太阳能光热/光电利用试验研究[J].东南大学学报(自然科学版),2018,48(4):629-638. DOI:10.3969/j.issn.1001-0505.2018.04.007.
更新日期/Last Update: 2018-07-20