[1]吴梁玉,孙清,吕浩男,等.翅片管强化方腔蓄冰性能的数值研究[J].东南大学学报(自然科学版),2018,48(4):639-645.[doi:10.3969/j.issn.1001-0505.2018.04.008]
 Wu Liangyu,Sun Qing,Lü Haonan,et al.Numerical study on enhancement of ice storage performance in rectangular tank by finned tube[J].Journal of Southeast University (Natural Science Edition),2018,48(4):639-645.[doi:10.3969/j.issn.1001-0505.2018.04.008]
点击复制

翅片管强化方腔蓄冰性能的数值研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第4期
页码:
639-645
栏目:
能源与动力工程
出版日期:
2018-07-20

文章信息/Info

Title:
Numerical study on enhancement of ice storage performance in rectangular tank by finned tube
作者:
吴梁玉12孙清1吕浩男1张程宾2曹鹏1刘向东1
1扬州大学水利与能源动力工程学院, 扬州 225127; 2东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096
Author(s):
Wu Liangyu12 Sun Qing1 Lü Haonan1 Zhang Chengbin2 Cao Peng1 Liu Xiangdong1
1 School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China
2 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
蓄冰性能 翅片管 自然对流 enthalpy-porosity方法
Keywords:
ice storage performance finned tube nature convection enthalpy-porosity method
分类号:
TK124
DOI:
10.3969/j.issn.1001-0505.2018.04.008
摘要:
为了研究管外耦合纵向翅片对制冷管蓄冰性能的强化作用,基于enthalpy-porosity方法建立了考虑自然对流条件下矩形腔内耦合纵向翅片的制冷管外蓄冰过程非稳态模型,并进行了数值求解.探讨了自然对流对蓄冰过程的作用机理,明确了翅片管的强化作用,分析了翅片材质及结构参数对蓄冰强化作用的影响.研究表明,受到自然对流的影响,矩形腔内的主流区域出现新的对流涡,液相区出现流动反转现象.冷媒温度-10 ℃、初始温度4 ℃条件下,相同蓄冰时间内,在制冷管的外表面上耦合纵向翅片可以在制冷光管的基础上将蓄冰量提升88.3%~260.1%.随着翅片高度和翅片数量的增加,得益于传热面积的增大,蓄冰量呈现近似线性增加.此外,翅片厚度的增加对蓄冰量的增益小于翅片高度与翅片数量增加的影响.
Abstract:
To study the ice storage performance of cooling tube enhanced by axially arranged external fins, a transit numerical model considering natural convection is developed based on the enthalpy-porosity method. The dynamic behavior of water solidifying outside the cooling tube in a rectangular ice storage tank is numerically studied. The underlying mechanism of natural convection effects on ice storage performance is studied. The enhancing effects of adding fins on cooling tubes are clarified and the influences of major fin parameters including fin materials and fin structures are discussed. The results indicate that, vortexes are developed in the main region of water under the effect of natural convection which leads to inversed flow pattern eventually. Under the condition of -10 ℃ chilled water and 4 ℃ initial temperature, the amount of ice storage can be increased up to 83.3% to 260.1% during the same period of cooling time by coupling the axially arranged external fins onto the tube compared with the smooth tube. In addition, the ice storage capacity almost increases linearly with the increase of the fin height and fin number, which benefits from the increment of the heat transfer area. In addition, increasing the thickness of the fins is less beneficial for the ice storage capacity than increasing the fin height and fin number.

参考文献/References:

[1] Kojok F, Fardoun F, Younes R, et al. Hybrid cooling systems: A review and an optimized selection scheme[J].Renewable and Sustainable Energy Reviews, 2016, 65: 57-80. DOI:10.1016/j.rser.2016.06.092.
[2] Jia Y X, Liu Y S, Sun S F, et al. Refrigerating characteristics of ice storage capsule for temperature control of coal mine refuge chamber [J]. Applied Thermal Engineering, 2015, 75: 756-762. DOI:10.1016/j.applthermaleng.2014.10.036.
[3] Sparrow E M, Larson E D, Ramsey J W. Freezing on a finned tube for either conduction-controlled or natural-convection-controlled heat transfer[J]. International Journal of Heat and Mass Transfer, 1981, 24(2): 273-284. DOI:10.1016/0017-9310(81)90035-1.
[4] Kayansayan N, Acar M A. Ice formation around a finned-tube heat exchanger for cold thermal energy storage[J]. International Journal of Thermal Sciences, 2006, 45(4): 405-418.DOI:10.1016/j.ijthermalsci.2005.05.009.
[5] Erek A, Ilken Z, Acar M A. Experimental and numerical investigation of thermal energy storage with a finned tube [J]. International Journal of Energy Research, 2005, 29(4): 283-301. DOI:10.1002/er.1057.
[6] Al-Sarrach H M S, Kahwaji G Y, Samaha M A. Modeling coupled conduction-convection ice formation on horizontal axially finned and unfinned tubes [J]. Journal of Fluids Engineering, 2017, 139(12): 121101. DOI:10.1115/1.4037279.
[7] Jannesari H, Abdollahi N. Experimental and numerical study of thin ring and annular fin effects on improving the ice formation in ice-on-coil thermal storage systems [J]. Applied Energy, 2017, 189:369-384. DOI:10.1016/j.apenergy.2016.12.064.
[8] Tay N H S, Bruno F, Belusko M. Comparison of pinned and finned tubes in a phase change thermal energy storage system using CFD[J]. Applied Energy, 2013, 104: 79-86. DOI:10.1016/j.apenergy.2012.10.040.
[9] Xie J L, Yuan C. Numerical study of thin layer ring on improving the ice formation of building thermal storage system [J]. Applied Thermal Engineering, 2014, 69(1): 46-54. DOI:10.1016/j.applthermaleng.2014.04.053.
[10] Voller V R, Prakash C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems [J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. DOI:10.1016/0017-9310(87)90317-6.
[11] Brent A D, Voller V R, Reid K J. Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal[J]. Numerical Heat Transfer, 1988, 13(3): 297-318. DOI:10.1080/10407788808913615.
[12] Shih Y C, Chou H. Numerical study of solidification around staggered cylinders in a fixed space [J]. Numerical Heat Transfer, Part A: Applications, 2005, 48(3): 239-260. DOI:10.1080/10407780590945579.
[13] Sasaguchi K, Kusano K, Viskanta R. A numerical analysis of solid-liquid phase change heat transfer around a single and two horizontal, vertically spaced cylinders in a rectangular cavity[J]. International Journal of Heat and Mass Transfer, 1997, 40(6): 1343-1354. DOI:10.1016/s0017-9310(96)00210-4.
[14] Vu T V. Three-phase computation of solidification in an open horizontal circular cylinder[J]. International Journal of Heat and Mass Transfer, 2017, 111: 398-409. DOI:10.1016/j.ijheatmasstransfer.2017.04.011.
[15] Fertelli A, Günhan G, Buyruk E. Numerical investigation of effect of the position of the cylinder on solidification in a rectangular cavity[J]. Heat and Mass Transfer, 2017, 53(2): 687-704. DOI:10.1007/s00231-016-1842-1.

备注/Memo

备注/Memo:
收稿日期: 2017-12-25.
作者简介: 吴梁玉(1987—),女,博士,讲师;张程宾(联系人),男,博士,副教授,cbzhang@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51706194)、江苏省自然科学基金资助项目(BK20170082)、扬州市自然科学基金资助项目(YZ2017103).
引用本文: 吴梁玉,孙清,吕浩男,等.翅片管强化方腔蓄冰性能的数值研究[J].东南大学学报(自然科学版),2018,48(4):639-645. DOI:10.3969/j.issn.1001-0505.2018.04.008.
更新日期/Last Update: 2018-07-20