[1]查小波,张伦,张小松.蒸发冷却冷凝除湿复合新风系统优化[J].东南大学学报(自然科学版),2018,48(4):646-653.[doi:10.3969/j.issn.1001-0505.2018.04.009]
 Zha Xiaobo,Zhang Lun,Zhang Xiaosong.Optimization of the compound fresh air treatment system of evaporative cooling and condensing dehumidification[J].Journal of Southeast University (Natural Science Edition),2018,48(4):646-653.[doi:10.3969/j.issn.1001-0505.2018.04.009]
点击复制

蒸发冷却冷凝除湿复合新风系统优化()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第4期
页码:
646-653
栏目:
能源与动力工程
出版日期:
2018-07-20

文章信息/Info

Title:
Optimization of the compound fresh air treatment system of evaporative cooling and condensing dehumidification
作者:
查小波张伦张小松
东南大学能源与环境学院, 南京 210096
Author(s):
Zha Xiaobo Zhang Lun Zhang Xiaosong
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
冷凝除湿 表冷器 喷淋填料 传热传质 全热回收
Keywords:
condensing dehumidification cooling coil spray filling heat and mass transfer total heat recovery
分类号:
TK123
DOI:
10.3969/j.issn.1001-0505.2018.04.009
摘要:
为降低常规热泵驱动的蒸发冷却冷凝除湿新风系统负荷,提出在常规系统流程基础上增加由表冷器和喷淋填料组成的单级全热回收模块,得到改进流程Ⅰ,并建立系统数学模型.模拟结果表明:保持系统总传热传质能力不变,系统性能随全热回收模块传热传质能力的增加先上升后下降,在典型夏季工况下,系统最优性能系数COP相比基础流程提升0.33.为减少回风全热回收过程的损失,提高送风温度,在改进流程Ⅰ的基础上增加送风显热回收模块,得到改进流程Ⅱ,此时系统性能系数COP进一步提升0.12.此外,采用多级全热回收有助于提高空气与水传热传质的匹配性,但会增加水泵功耗,对系统总体性能的提升有限.最后,搭建了基于改进流程Ⅱ的系统试验台,对上述模拟结果进行了实验验证.
Abstract:
In order to reduce the load of the conventional evaporative cooling and condensing dehumidification fresh air system, a single-stage total heat recovery module consisting of a cooler and a spray filler is proposed based on the basic process, and then the improved process Ⅰ is obtained. The mathematical model of the system is established. The simulation results show that keeping total heat and mass transfer capacity of the system unchanged, the system performance first increases and then decreases with the increase of the heat and mass transfer capacity of the total heat recovery module. Under typical indoor and outdoor air conditions, the optimal COP(coefficient of performance)of the system is 0.33 higher than that of the basic process. In order to reduce the loss of exergy of heat recovery process and raise the supply air temperature, single stage of sensible heat recovery can be added to obtain the improved process Ⅱ on the basis of the improved process Ⅰ, and thus the COP of the system is further increased by 0.12 compared with the improved process Ⅰ. In addition, multi-stage total heat recovery can improve air-water heat and mass transfer matching, but the pump power consumption is increased, so the improvement of the overall system performance is limited. Finally, an experiment table based on the improved process Ⅱ was built, and the simulation values were verified.

参考文献/References:

[1] Al-Juwayhel F, El-Dessouky H, Ettouney H, et al. Experimental evaluation of one, two, and three stage evaporative cooling systems[J]. Heat Transfer Engineering, 2010, 25(6): 72-86. DOI:10.1080/01457630490486292.
[2] 黄翔. 国内外蒸发冷却空调技术研究进展(1)[J]. 暖通空调, 2007, 37(2):24-29,136. DOI:10.3969/j.issn.1002-8501.2007.02.005.
Huang Xiang. Research progress of evaporative cooling air conditioning technology at home and abroad(1)[J]. Heating Ventilating& Air Conditioning, 2007, 37(2):24-29,136. DOI:10.3969/j.issn.1002-8501.2007.02.005. (in Chinese)
[3] 黄翔. 蒸发冷却新风空调集成系统[J]. 暖通空调, 2003, 33(5):13-16. DOI:10.3969/j.issn.1002-8501.2003.05.003.
Huang Xiang. Integrating evaporative cooling outdoor air system[J]. Heating Ventilating& Air Conditioning, 2003, 33(5):13-16. DOI:10.3969/j.issn.1002-8501.2003.05.003. (in Chinese)
[4] Costelloe B, Finn D. Indirect evaporative cooling potential in air-water systems in temperate climates[J]. Energy and Buildings, 2003, 35(6): 573-591. DOI:10.1016/s0378-7788(02)00161-5.
[5] Heidarinejad G, Bozorgmehr M, Delfani S, et al. Experimental investigation of two-stage indirect/direct evaporative cooling system in various climatic conditions[J]. Building and Environment, 2009, 44(10):2073-2079. DOI:10.1016/j.buildenv.2009.02.017.
[6] Delfani S, Esmaeelian J, Pasdarshahri H, et al. Energy saving potential of an indirect evaporative cooler as a pre-cooling unit for mechanical cooling systems in Iran[J]. Energy and Buildings, 2010, 42(11): 2169-2176. DOI:10.1016/j.enbuild.2010.07.009.
[7] Hajidavalloo E. Application of evaporative cooling on the condenser of window-air-conditioner[J]. Applied Thermal Engineering, 2007, 27(11/12): 1937-1943. DOI: 10.1016/j.applthermaleng.2006.12.014.
[8] 孙铁柱,黄翔,文力.蒸发冷却与机械制冷复合高温冷水机组初探[J].化工学报,2010,61(S2):137-141.
  Sun Tiezhu, Huang Xiang, Wen Li. Discussion of evaporative cooling and mechanical refrigeration compound high-temperature chiller[J]. CIESC Journal, 2010, 61(S2):137-141.(in Chinese)
[9] 路则锋, 陈沛霖, 张旭. 逆流填料式液体除湿系统传热传质过程解析解[J]. 同济大学学报(自然科学版), 2000, 28(3): 342-347. DOI:10.3321/j.issn:0253-374X.2000.03.020.
Lu Zefeng, Chen Peilin, Zhang Xu. Analytical solution of heat and mass Transfer processes in packed-type counterflow liquid desiccant systems and its verification[J]. Journal of Tongji University(Natural Science), 2000, 28(3): 342-347. DOI:10.3321/j.issn:0253-374X.2000.03.020. (in Chinese)
[10] 刘晓华. 溶液调湿式空气处理过程中热湿耦合传递特性分析[D]. 北京: 清华大学建筑学院, 2007.
[11] Liu X H, Jiang Y, Qu K Y. Heat and mass transfer model of cross flow liquid desiccant air dehumidifier/regenerator[J]. Energy Conversion and Management, 2007, 48(2): 546-554. DOI:10.1016/j.enconman.2006.06.002.
[12] Webb R L. Air-side heat transfer correlations for flat and wavy plate fin-and-tube geometries[J]. ASHRAE Transactions, 1990, 96: 445-449.
[13] Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. Int Chem Eng, 1976, 16(2):359-368.
[14] 张恩泽,池映天. 表冷器热工性能数值模拟的探讨[J]. 能源研究与信息, 2001, 17(4):232-238. DOI:10.3969/j.issn.1008-8857.2001.04.008.
Zhang Enze, Chi Yingtian. Numerical simulation of the thermal performance of cooling coils[J]. Energy Research & Information, 2001, 17(4):232-238. DOI:10.3969/j.issn.1008-8857.2001.04.008.
[15] 江亿, 谢晓云, 刘晓华. 湿空气热湿转换过程的热学原理[J]. 暖通空调, 2011, 41(3):51-64. DOI:10.3969/j.issn.1002-8501.2011.03.007.
Jiang Yi, Xie Xiaoyun, Liu Xiaohua. Thermological principle of moist air heat and moisture conversion processes[J]. Heating Ventilating& Air Conditioning, 2011, 41(3): 51-64. DOI:10.3969/j.issn.1002-8501.2011.03.007. (in Chinese)
[16] 黄维冬, 张伦, 张小松. 间接蒸发冷却多级新风处理系统的性能分析[J]. 东南大学学报(自然科学版), 2016, 46(1):55-61.DOI: 10.3969/j.issn.1001-0505.2016.01.010.
Huang Weidong, Zhang Lun, Zhang Xiaosong. Performance analysis of multistage indirect evaporative cooling fresh air processing system [J]. Journal of Southeast University(Natural Science Edition), 2016, 46(1):55-61. DOI:10.3969/j.issn.1001-0505.2016.01.010. (in Chinese)

相似文献/References:

[1]黄维冬,张伦,张小松.间接蒸发冷却多级新风处理系统的性能分析[J].东南大学学报(自然科学版),2016,46(1):55.[doi:10.3969/j.issn.1001-0505.2016.01.010]
 Huang Weidong,Zhang Lun,Zhang Xiaosong.Performance analysis of multistage indirect evaporative cooling fresh air processing system[J].Journal of Southeast University (Natural Science Edition),2016,46(4):55.[doi:10.3969/j.issn.1001-0505.2016.01.010]

备注/Memo

备注/Memo:
收稿日期: 2018-01-16.
作者简介: 查小波(1992—),男,硕士生;张伦(联系人),男,博士,讲师,zhanglun@seu.edu.cn.
基金项目: 江苏省自然科学基金青年基金资助项目(BK20160669).
引用本文: 查小波,张伦,张小松.蒸发冷却冷凝除湿复合新风系统优化[J].东南大学学报(自然科学版),2018,48(4):646-653. DOI:10.3969/j.issn.1001-0505.2018.04.009.
更新日期/Last Update: 2018-07-20