[1]邹凯凯,李舒宏.夏热冬冷地区外保温墙体凝露特性及防结露措施分析[J].东南大学学报(自然科学版),2018,48(4):654-661.[doi:10.3969/j.issn.1001-0505.2018.04.010]
 Zou Kaikai,Li Shuhong.Analysis of condensation characteristics and anti-condensation measures of external thermal insulation wall in hot summer and cold winter areas[J].Journal of Southeast University (Natural Science Edition),2018,48(4):654-661.[doi:10.3969/j.issn.1001-0505.2018.04.010]
点击复制

夏热冬冷地区外保温墙体凝露特性及防结露措施分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第4期
页码:
654-661
栏目:
建筑学
出版日期:
2018-07-20

文章信息/Info

Title:
Analysis of condensation characteristics and anti-condensation measures of external thermal insulation wall in hot summer and cold winter areas
作者:
邹凯凯李舒宏
东南大学能源与环境学院, 南京 210096
Author(s):
Zou Kaikai Li Shuhong
School of Energy and Environment, Southeast University, Nanjing 210096, China
关键词:
结露 热湿传递 相对湿度 空气层 隔汽层
Keywords:
condensation heat and moisture transfer relative humidity air layer vapor-barrier layer
分类号:
TU111.19
DOI:
10.3969/j.issn.1001-0505.2018.04.010
摘要:
为降低墙体内部结露的危害,建立以温度和相对湿度为计算驱动势的一维热湿耦合传递模型,对夏热冬冷地区常见的EPS外保温墙体进行凝露特性及相关防结露措施效果的分析.通过模拟,对比分析了南京、南昌、长沙及重庆地区EPS外保温墙体冬夏季工况条件下的热湿分布情况.在夏季工况下,4个地区墙体的保温层与基层材料界面处相对湿度分别高达86.43%,82.45%,86.07%,82.61%,具有较高的结露风险.以南京地区为例,对采用空气层、隔汽层2种防结露措施的EPS外保温墙体进行防结露效果分析.结果表明,在保温层与基层材料界面处设置15 mm空气层,可降低保温层最大相对湿度2.31%;而在室外保温层外侧设置隔汽层,虽然降低了夏季工况下的相对湿度,但将保温层冬季相对湿度提高至91.26%,具有不利影响.因此夏热冬冷地区冬夏季工况下,外保温墙体采取空气层防结露措施比隔汽层更有利.
Abstract:
In order to reduce the damage caused by the condensation in the wall, a one-dimensional heat and moisture coupling transfer model based on temperature and relative humidity was established. The condensation characteristics and the anti-condensation measures of EPS(expanded polystyrene)external thermal insulation wall in the hot summer and cold winter areas were analyzed. Through the simulation, the distributions of heat and moisture inside EPS thermal insulation wall in Nanjing, Nanchang, Changsha and Chongqing under the summer and winter conditions were compared and analyzed. Under the summer conditions, the relative humidity at the interface between the insulation layer and the base material of wall in the four areas is as high as 86.43%, 82.45%, 86.07% and 82.61%, respectively, which has a high dew condensation risk. Taking Nanjing as an example, the anti-condensation effect of the EPS external insulation wall with the anti-dewing measures of air layer and vapor barrier was simulated. The simulation results show that the maximum relative humidity of the thermal insulation layer can be reduced by 2.31% after 15 mm air layer is set at the interface between the thermal insulation layer and the base material of wall. Setting the vapor barrier layer at the surface on the outside of the insulation layer can reduce the relative humidity under the summer conditions, but increase the relative humidity to 91.26% under the winter condition, which has an adverse effect. Therefore, in the hot summer and cold winter areas, the anti-condensation measure of air layer is more favorable than the measure of vapor barrier layer in the external thermal insulation wall under the summer or winter condition.

参考文献/References:

[1] Litavcova E, Korjenic A, Korjenic S, et al. Diffusion of moisture into building materials: A model for moisture transport[J]. Energy and Buildings, 2014, 68: 558-561. DOI:10.1016/j.enbuild.2013.09.018.
[2] Li Q, Rao J, Fazio P. Development of HAM tool for building envelope analysis[J]. Building and Environment, 2009, 44(5): 1065-1073. DOI:10.1016/j.buildenv.2008.07.017.
[3] Ozcelik Y, Ozguven A. Water absorption and drying features of different natural building stones[J]. Construction and Building Materials, 2014, 63: 257-270. DOI:10.1016/j.conbuildmat.2014.04.030.
[4] Thiis T K, Burud I, Kraniotis D, et al. The role of transient wetting on mould growth on wooden claddings[J].Energy Procedia, 2015, 78: 249-254. DOI:10.1016/j.egypro.2015.11.629.
[5] Kocí V, Vejmelková E, Cáchová M, et al. Effect of moisture content on thermal properties of porous building materials[J]. International Journal of Thermophysics, 2017, 38(2):1-12. DOI:10.1007/s10765-016-2164-8.
[6] Othman N L, Jaafar M, Harun W M W, et al. A case study on moisture problems and building defects[J]. Procedia—Social and Behavioral Sciences, 2015, 170: 27-36. DOI:10.1016/j.sbspro.2015.01.011.
[7] dos Santos G H, Mendes N, Philippi P C. A building corner model for hygrothermal performance and mould growth risk analyses[J]. International Journal of Heat and Mass Transfer, 2009, 52(21): 4862-4872. DOI:10.1016/j.ijheatmasstransfer.2009.05.026.
[8] Bellia L, Minichiello F. A simple evaluator of building envelope moisture condensation according to an European standard[J]. Building and Environment, 2003, 38(3):457-468. DOI: 10.1016/S0360-1323(02)00060-4.
[9] Liu J, Aizawa H, Yoshino H. CFD prediction of surface condensation on walls and its experimental validation[J]. Building and Environment, 2004, 39(8): 905-911. DOI:10.1016/j.buildenv.2004.01.015.
[10] Glaser H. Graphical method for investigation of diffusion process[M]. German: Kalteohnik, 1958:35-67.
[11] 李继领, 于航, 孟二林,等. 被动调湿方式在高湿地区冬季的应用分析[J]. 建筑热能通风空调, 2010,29(5):55-58. DOI: 10.3969/j.issn.1003-0344.2010.05.012.
Li Jiling, Yu Hang, Meng Erlin, et al. Application of passive humidity control method in high humidity area in winter[J]. Building Energy & Environment, 2010, 29(5):55-58. DOI:10.3969/j.issn.1003-0344.2010.05.012. (in Chinese)
[12] 陈启高. 多孔围护结构中湿度计算理论[J]. 重庆建筑工程学院学报, 1984(3):1-18.
  Chen Qigao. Moisture calculation theory in porous envelope[J]. Journal of Chongqing Architecture University, 1984(3):1-18.(in Chinese)
[13] 郭兴国, 陈友明. 热湿气候地区多层墙体的热湿性能分析[J]. 湖南大学学报(自然科学版), 2008, 35(8):1-4.
  Guo Xingguo, Chen Youming. Analysis of the hygrothermal performance of multilayer wall exposed to hot and humid climate[J]. Journal of Hunan University(Natural Sciences), 2008, 35(8):1-4.(in Chinese)
[14] 黄建恩, 吕恒林, 冯伟,等. 蒸压加气混凝土砌块墙体热湿耦合传递特性[J]. 建筑材料学报, 2015,18(1):88-94.DOI: 10.3969/j.issn.1007-9629.2015.01.016.
Huang Jian’en, Lü Henglin, Feng Wei, et al. Coupled heat & moisture transmission characteristics of autoclaved aerated concrete block wall[J]. Journal of Building Materials, 2015, 18(1):88-94. DOI:10.3969/j.issn.1007-9629.2015.01.016. (in Chinese)
[15] 刘加平. 建筑物理[M]. 北京:中国建筑工业出版社, 2009: 94-97.
[16] 王莹莹, 刘艳峰, 刘加平. 湿迁移对墙体传热的影响分析[J]. 土木建筑与环境工程, 2012, 34(6):109-114. DOI: 10.3969/j.issn.1674-4764.2012.06.018.
Wang Yingying, Liu Yanfeng, Liu Jiaping. Analysis on the effect of moisture migration through walls on heat transfer[J]. Journal of Civil, Architectural & Environmental Engineering, 2012, 34(6):109-114. DOI:10.3969/j.issn.1674-4764.2012.06.018. (in Chinese)
[17] Künzel H M. Simultaneous heat and moisture transport in building components: one- and two-dimensional calculation using simple parameters[M]. Irb Verlag, 1995: 9-10.
[18] Mendes N, Philippi P C, Lamberts R. A new mathematical method to solve highly coupled equations of heat and mass transfer in porous media[J]. International Journal of Heat and Mass Transfer, 2002, 45(3): 509-518. DOI:10.1016/s0017-9310(01)00172-7.
[19] Talukdar P, Olutmayin S O, Osanyintola O F, et al. An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials. Part Ⅰ: Experimental facility and material property data[J]. International Journal of Heat and Mass Transfer, 2007, 50(23): 4527-4539. DOI:10.1016/j.ijheatmasstransfer.2007.03.026.
[20] Talukdar P, Osanyintola O F, Olutimayin S O, et al. An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials. Part Ⅱ: Experimental, numerical and analytical data[J]. International Journal of Heat and Mass Transfer, 2007, 50(25): 4915-4926. DOI:10.1016/j.ijheatmasstransfer.2007.03.025.
[21] 李魁山, 张旭, 韩星,等. 建筑材料等温吸放湿曲线性能实验研究[J]. 建筑材料学报, 2009, 12(1):81-84. DOI: 10.3969/j.issn.1007-9629.2009.01.017.
Li Kuishan, Zhang Xu, Han Xing, et al. Experimental research of isothermal sorption curve of building materials[J]. Journal of Building Materials, 2009, 12(1):81-84. DOI:10.3969/j.issn.1007-9629.2009.01.017. (in Chinese)
[22] 李魁山, 张旭, 韩星,等. 建筑材料水蒸气渗透系数实验研究[J]. 建筑材料学报, 2009, 12(3):288-291. DOI: 10.3969/j.issn.1007-9629.2009.03.008.
Li Kuishan, Zhang Xu, Han Xing, et al. Experimental research of water vapor permeability through building materials[J]. Journal of Building Materials, 2009, 12(1):288-291. DOI:10.3969/j.issn.1007-9629.2009.03.008. (in Chinese)
[23] Air-Conditioning Engineers. ASHRAE handbook: Fundamentals [M]. SI ed. ASHRAE, 2013: 26.

备注/Memo

备注/Memo:
收稿日期: 2018-01-22.
作者简介: 邹凯凯(1993—),男,硕士生;李舒宏(联系人),男,博士,教授,博士生导师,equart@seu.edu.cn.
基金项目: “十三五”国家科技支撑计划资助项目(2017YFC0702501)、“十二五”国家科技支撑计划资助项目(2014BAJ01B05-2).
引用本文: 邹凯凯,李舒宏.夏热冬冷地区外保温墙体凝露特性及防结露措施分析[J].东南大学学报(自然科学版),2018,48(4):654-661. DOI:10.3969/j.issn.1001-0505.2018.04.010.
更新日期/Last Update: 2018-07-20