[1]朱劲松,张一峰,陈兴达.移动车辆荷载作用下梁体裂缝扩展规律[J].东南大学学报(自然科学版),2018,48(4):678-686.[doi:10.3969/j.issn.1001-0505.2018.04.013]
 Zhu Jinsong,Zhang Yifeng,Chen Xingda.Crack propagation of concrete beams under moving vehicle loads[J].Journal of Southeast University (Natural Science Edition),2018,48(4):678-686.[doi:10.3969/j.issn.1001-0505.2018.04.013]
点击复制

移动车辆荷载作用下梁体裂缝扩展规律()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第4期
页码:
678-686
栏目:
土木工程
出版日期:
2018-07-20

文章信息/Info

Title:
Crack propagation of concrete beams under moving vehicle loads
作者:
朱劲松12张一峰1陈兴达1
1天津大学建筑工程学院, 天津 300072; 2天津大学滨海土木工程结构与安全教育部重点实验室, 天津 300072
Author(s):
Zhu Jinsong12 Zhang Yifeng1 Chen Xingda1
1School of Civil Engineering, Tianjin University, Tianjin 300072, China
2Key Laboratory of Coast Civil Structure Safety of Ministry of Education, Tianjin University, Tianjin 300072, China
关键词:
车桥耦合振动 相互作用积分 三维动态应力强度因子 裂缝扩展性能
Keywords:
vehicle-bridge coupled vibration interaction integral 3D dynamic stress intensity factors crack propagation performance
分类号:
TU997
DOI:
10.3969/j.issn.1001-0505.2018.04.013
摘要:
为了研究移动车辆荷载作用下开裂梁体的裂缝扩展规律,提出了一种基于相互作用积分法与车桥耦合振动分析相结合的裂缝尖端三维动态应力强度因子求解方法.同时,基于复合裂缝的临界断裂曲线提出了评估动力作用下弯剪裂缝扩展性能的参数λ.采用数值模拟方法分析了路面等级、车重、车速、梁体损伤程度和裂缝角度对移动荷载作用下裂缝扩展性能的影响.结果表明:车辆荷载增加、路面等级退化和梁体损伤程度增大均会导致裂缝扩展性能参数变大,其中车辆荷载作用最为明显,车辆行驶速度及裂缝角度对其影响不大;车辆荷载的冲击作用会加大裂缝扩展的风险,车辆荷载较轻和路面退化严重时,其对裂缝扩展性能的动力放大作用非常明显;车辆荷载和梁体损伤程度对裂缝扩展性能参数的耦合作用表现出非线性,随着车辆荷载的增大和梁体损伤程度的增加,裂缝扩展的风险加速增大.
Abstract:
In order to study the crack propagation law of cracked bridges under the action of moving vehicle loads, a method for solving three-dimensional dynamic stress intensity factor based on the interaction integral method and vehicle-bridge coupled vibration analysis is proposed. Meanwhile, a parameter λ representing the crack propagation performance under dynamic action is proposed based on the critical fracture curve of composite fracture. Then, the influences of pavement grade, vehicle weight, vehicle speed, beam damage degree and fracture angle on crack propagation performance under moving loads are analyzed by the numerical simulation method. The results show that the increase of the vehicle load, the degradation of pavement grade and the increase of the damage degree of the beam will lead to the increase of the crack propagation performance parameter. The effect of the vehicle load is the most obvious, and the vehicle speed and crack angle have little effect. The impact of the vehicle load will increase the risk of fracture expansion; when the vehicle load is light and the degradation of the road surface is serious, the dynamic amplification effect on the crack expansion performance is very obvious. The coupling effect of the vehicle load and beam damage on the crack expansion performance parameter is nonlinear. With the increase of the vehicle load and the degree of beam damage, the risk of crack propagation is accelerated.

参考文献/References:

[1] 殷新锋, 方志. 车辆作用下开裂混凝土连续梁桥的动力响应分析[J]. 工程力学, 2009, 26(4):174-180.
  Yin Xinfeng, Fang Zhi. Dynamic response of cracked concrete continuous beam bridge under moving vehicular loads[J]. Engineering Mechanics, 2009, 26(4):174-180.(in Chinese)
[2] 谭国金, 刘子煜, 王龙林,等. 车辆作用下中小跨径裂缝简支梁桥自振特性分析[J]. 振动工程学报, 2016, 29(5):831-841.DOI: 10.16385/j.cnki.issn.1004-4523.2016.05.010.
Tan Guojin, Liu Ziyu, Wang Longlin, et al. Free vibration analysis of a small or medium-span cracked simply supported bridge considering bridge-vehicle interaction[J]. Journal of Vibration Engineering, 2016, 29(5):831-841. DOI:10.16385/j.cnki.issn.1004-4523.2016.05.010. (in Chinese)
[3] 王文洁, 吕中荣, 刘济科. 含呼吸裂缝的桥梁振动响应与时频特性分析[J]. 振动与冲击, 2013,32(11):12-16. DOI:10.3969/j.issn.1000-3835.2013.11.003.
Wang Wenjie, Lü Zhongrong, Liu Jike. Dynamic response and time-frequency feature analysis for a bridge with breathing cracks[J]. Journal of Vibration and Shock, 2013, 32(11):12-16. DOI:10.3969/j.issn.1000-3835.2013.11.003. (in Chinese)
[4] 李玉龙, 刘元镛. 三点弯曲试样动态冲击特性的有限元分析[J]. 计算结构力学及其应用, 1995(1):110-115.
  Li Yulong, Liu Yuanyong. Dynamic behaviour of three point bending specimen under impact loading by using finite element method[J]. Computational Structural Mechanics and Applications, 1995(1):110-115.(in Chinese)
[5] 姜风春, 刘瑞堂, 张晓欣. 三点弯曲试样动应力强度因子求解的振动分析方法[J]. 工程力学, 2002,19(4):81-84.DOI: 10.3969/j.issn.1000-4750.2002.04.017.
Jiang Fengchun, Liu Ruitang, Zhang Xiaoxin. Vibration analysis method used for determining the dynamic stress intensity factor of three-point bending specimen [J]. Engineering Mechanics, 2002, 19(4):81-84. DOI:10.3969/j.issn.1000-4750.2002.04.017. (in Chinese)
[6] 中国航空研究院. 应力强度因子手册[M]. 北京:科学出版社, 1981: 224-225.
[7] Nakamura T. Three-dimensional stress fields of elastic interface cracks[J]. Journal of Applied Mechanics, 1991, 58(4): 939. DOI:10.1115/1.2897711.
[8] Song S H, Paulino G H. Dynamic stress intensity factors for homogeneous and smoothly heterogeneous materials using the interaction integral method[J]. International Journal of Solids and Structures, 2006, 43(16): 4830-4866. DOI:10.1016/j.ijsolstr.2005.06.102.
[9] 朱劲松, 邑强. 中下承式拱桥吊杆应力冲击系数不均匀性研究[J]. 振动与冲击, 2012, 31(13):5-10.DOI: 10.3969/j.issn.1000-3835.2012.13.002.
Zhu Jinsong, Yi Qiang. Non-uniformity of stress impact factor of suspenders on half-through or through arch bridges[J]. Journal of Vibration & Shock, 2012, 31(13):5-10. DOI:10.3969/j.issn.1000-3835.2012.13.002. (in Chinese)
[10] Au F T K, Cheng Y S, Cheung Y K. Effects of random road surface roughness and long-term deflection of prestressed concrete girder and cable-stayed bridges on impact due to moving vehicles[J]. Computers & Structures, 2001, 79(8): 853-872. DOI:10.1016/s0045-7949(00)00180-2.
[11] ISO. ISO 8608 Mechanical vibration—Road surface profiles—Reporting of measured data[S].ISO,1995.
[12] Nakamura T, Parks D M. Antisymmetrical 3-D stress field near the crack front of a thin elastic plate[J]. International Journal of Solids and Structures, 1989, 25(12): 1411-1426. DOI:10.1016/0020-7683(89)90109-1.
[13] 宫经全, 张少钦, 李禾,等. 基于相互作用积分法的应力强度因子计算[J]. 南昌航空大学学报(自然科学版), 2015, 29(1):42-48.DOI: 10.3969/j.issn.1001-4926.2015.01.007.
Gong Jingquan, Zhang Shaoqin, Li He, et al. Computation of the stress intensity factor based on the interaction integral method[J]. Journal of Nanchang Hangkong University(Natural Sciences), 2015, 29(1):42-48. DOI:10.3969/j.issn.1001-4926.2015.01.007. (in Chinese)
[14] 杨巍, 张宁, 许良. 基于有限元法对裂纹尖端应力强度因子的计算[J]. 沈阳航空航天大学学报, 2014, 31(3):19-23.DOI: 10.3969/j.issn.2095-1248.2014.03.004.
Yang Wei, Zhang Ning, Xu Liang. Calculation of stress intensity factors of crack tips based on FEM[J]. Journal of Shenyang Aerospace University, 2014,31(3):19-23. DOI:10.3969/j.issn.2095-1248.2014.03.004. (in Chinese)
[15] 徐道远, 梁正平. 混凝土Ⅰ、Ⅱ型复合裂纹断裂判据的探讨[J]. 水利学报, 1982, 13(6): 57-61.
  Xu Daoyuan, Liang Zhengping. Discussion about fracture criterion for Ⅰ-Ⅱ mixed mode in concrete [J].Journal of Hydraulic Engineering, 1982, 13(6): 57-61.(in Chinese)
[16] 许斌, 江见鲸. 混凝土Ⅰ-Ⅱ复合型断裂判据研究[J]. 工程力学, 1995, 12(2): 13-21.
  Xu Bin, Jiang Jianjing. Study of Ⅰ-Ⅱ mixed-mode fracture criteria for concrete [J]. Engineering Mechanics, 1995,12(2): 13-21.(in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2017-11-24.
作者简介: 朱劲松(1975—),男,博士,教授,博士生导师,jszhu@tju.edu.cn.
基金项目: 国家自然科学基金资助项目(51578370)、天津市科技支撑计划重点资助项目(16YFZCSF00460)、天津市自然科学基金资助项目(京津冀合作专项项目)(16JCZDJC40300)、上海市科委科技项目(17DZ1204203).
引用本文: 朱劲松,张一峰,陈兴达.移动车辆荷载作用下梁体裂缝扩展规律[J].东南大学学报(自然科学版),2018,48(4):678-686. DOI:10.3969/j.issn.1001-0505.2018.04.013.
更新日期/Last Update: 2018-07-20