[1]张雅婷,Jeffery Roesler,黄志义.基于FWD和温度梯度的CRCP反演方法修正[J].东南大学学报(自然科学版),2018,48(4):706-712.[doi:10.3969/j.issn.1001-0505.2018.04.017]
 Zhang Yating,Jeffery Roesler,Huang Zhiyi.Improved FWD backcalculation procedure for CRCP with temperature gradient[J].Journal of Southeast University (Natural Science Edition),2018,48(4):706-712.[doi:10.3969/j.issn.1001-0505.2018.04.017]
点击复制

基于FWD和温度梯度的CRCP反演方法修正()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第4期
页码:
706-712
栏目:
交通运输工程
出版日期:
2018-07-20

文章信息/Info

Title:
Improved FWD backcalculation procedure for CRCP with temperature gradient
作者:
张雅婷1Jeffery Roesler2黄志义1
1浙江大学建筑工程学院, 杭州 310058; 2 Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA
Author(s):
Zhang Yating1 Jeffery Roesler2 Huang Zhiyi1
1College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA
关键词:
连续配筋混凝土路面 落锤式弯沉仪 反演方法 温度梯度 有效厚度 层间黏结情况
Keywords:
continuously reinforced concrete pavement(CRCP) FWD(falling weight deflectometer) backcalculation procedure temperature gradient effective thickness bonding condition
分类号:
U416.216
DOI:
10.3969/j.issn.1001-0505.2018.04.017
摘要:
为了减少温度梯度对连续配筋混凝土路面(CRCP)反演分析的影响,对CRCP在极端环境(混凝土板顶与板底温度差值|ΔT |≥13.32 ℃)下的反演方法进行了修正.采用二维有限元软件ILLISLAB建立在不同温度差值(|ΔT|=4.44,8.88,13.32,17.76 ℃)和FWD荷载共同作用下的CRCP双车道模型,通过有限元模型得到理论弯沉值,对原有反演方法进行可靠性验证,量化不同温度差值对反演结果的影响.结果表明:当|ΔT|≥13.32 ℃(24 ℉)时,对横向裂缝间距大于3.0 m(10 feet)的CRCP,温度差值引起的反演参数(地基反应模量k值、混凝土弹性模量E和有效厚度heff)误差分别高达66.6%,27.8%和8.5%,难以忽略,进而提出适用于该环境下的反演方法.最后,将其应用到美国芝加哥某收费高速公路的CRCP试验段上,结果表明该路段中混凝土板与基层的层间黏结情况整体较好.
Abstract:
Corrections were made to reduce the error caused by temperature gradient based on the existing continuously reinforced concrete pavement(CRCP)backcalculation method given the condition of temperature difference(|ΔT|≥13.32 ℃)between the top and bottom of CRCP slab. Multiple finite element models given different combinations of temperature difference(|ΔT|=4.44, 8.88, 13.32, 17.76 ℃)and FWD(falling weight deflectometer)load were established using ILLISLAB, a 2-D finite element analysis software, to simulate a two-lane CRCP. The study was conducted based on the theoretical deflection values from the finite element model with the main factor being the influence of temperature difference on backcalculated results. The results show that maximum errors in backcalculated results(k-value, E and heff)reached 66.6%, 27.8% and 8.5%, respectively, when temperature difference is greater than 13.32 ℃ given the crack spacing in CRCP being higher than 3.0 m(10 feet), which cannot be ignored and as a result, an updated CRCP backcalculation method given higher temperature gradient condition was developed. The proposed backcalculation method was applied to a field CRCP test section near Chicago with the bonding condition between slab and base assessed to be overall good.

参考文献/References:

[1] 查旭东. 路面结构层模量反算方法综述[J]. 交通运输工程学报,2002,2(4): 1-6. DOI: 10.3321/j.issn:1671-1637.2002.04.001.
Zha Xudong. Summary of backcalculation methods of pavement layer moduli [J]. Journal of Traffic and Transportation Engineering, 2002, 2(4):1-6. DOI:10.3321/j.issn:1671-1637.2002.04.001. (in Chinese)
[2] 姬亦工,王复明,郭忠印. 基于落锤式弯沉仪(FWD)动态数据的路面模量反演方法[J]. 土木工程学报,2002,35(3): 31-36. DOI:10.3321/j.issn:1000-131X.2002.03.006.
Ji Yigong, Wang Fuming, Guo Zhongyin. Backcalculation for layer moduli of pavements based on falling weight deflectometer tests [J]. China Civil Engineering Journal, 2002, 35(3): 31-36. DOI:10.3321/j.issn:1000-131X.2002.03.006. (in Chinese)
[3] 查旭东,王秉纲. 基于人工神经网络的路面模量反算[J]. 交通运输工程学报,2002,2(2): 12-15. DOI:10.3321/j.issn:1671-1637.2002.02.003.
Zha Xudong, Wang Binggang. Backcalculation of pavement layer moduli based on artificial neural networks [J]. Journal of Traffic and Transportation Engineering, 2002, 2(2):12-15. DOI:10.3321/j.issn:1671-1637.2002.02.003. (in Chinese)
[4] 查旭东,王秉纲. 基于同伦方法的路面模量反算研究[J]. 中国公路学报,2003,16(1): 1-5. DOI:10.3321/j.issn:1001-7372.2003.01.001.
Zha Xudong, Wang Binggang. Backcalculation of modulus for pavements based on homotopy method [J]. China Journal of Highway and Transport, 2003, 16(1):1-5. DOI:10.3321/j.issn:1001-7372.2003.01.001. (in Chinese)
[5] 王才保. FWD在水泥混凝土路面性能评价中的应用[D]. 长沙:长沙理工大学交通运输工程学院,2007.
[6] 朱亚辉. 基于FWD弯沉盆参数的沥青路面刚度系数反算研究[D]. 广州:华南理工大学土木与交通学院,2016.
[7] 苗禄伟. 脱空与接缝传荷耦合作用下水泥混凝土路面力学响应分析[D]. 成都:西南交通大学土木工程学院,2016.
[8] 曾胜. 路面性能评价与分析方法研究[D]. 长沙:中南大学土木工程学院,2003.
[9] Ioannides A M, Barenberg E J, Lary J A. Interpretation of falling weight deflectometer results using principles of dimensional analysis [C]//4th International Conference on Concrete Pavement Design and Rehabilitation. West Lafayette,USA: Purdue University, 1989: 231-247.
[10] Khazanovich L, Tayabji S D, Darter M I. Backcalculation of layer parameters for LTPP test sections, volume Ⅰ: Slab on elastic solid and slab on dense-liquid foundation analysis of rigid pavements, FHWA-RD-00-086 [R]. Columbia, Maryland: ERES Consultants, 2001.
[11] King D, Roesler J R. Backcalculation procedure for bonded concrete overlays of asphalt pavement[J]. Transportation Research Record, 2014, 2457: 72-79. DOI:10.3141/2457-08.
[12] 罗启添,邱欣,杨青. 基于FWD路表动态弯沉盆参数的路基模量评价研究[J]. 公路工程,2011,36(2): 4-8. DOI:10.3969/j.issn.1674-0610.2011.02.002.
Luo Qitian, Qiu Xin, Yang Qing. Evaluation study on subgrade modulus based on FWD dynamic deflection basin parameters [J]. Highway Engineering, 2011, 36(2): 4-8. DOI:10.3969/j.issn.1674-0610.2011.02.002. (in Chinese)
[13] 李盛,陈尚武,刘朝晖,等. 旧水泥混凝土路面弯沉测试的若干问题研究[J]. 中南大学学报(自然科学版),2015,46(12): 4713-4718.
  Li Sheng, Chen Shangwu, Liu Zhaohui, et al. Some problems on deflection test of old cement concrete pavement [J]. Journal of Central South University(Science and Technology), 2015, 46(12): 4713-4718.(in Chinese)
[14] 肖鑫,张起森,李强. 水泥混凝土路面板底脱空评判方法研究——以梅观高速为例[J]. 公路交通科技,2016,33(4): 39-45. DOI:10.3969/j.issn.1002-0268.2016.04.007.
Xiao Xin, Zhang Qisen, Li Qiang. Study of method for identify void beneath cement concrete pavement slabs: A case study of Meiguan expressway [J]. Journal of Highway and Transportation Research and Development, 2016, 33(4): 39-45. DOI:10.3969/j.issn.1002-0268.2016.04.007. (in Chinese)
[15] Zhang Y T, Roesler J R. Improved backcalculation procedure for continuously reinforced concrete pavement [J/OL]. Transportation Research Record, 2018. https://www.researchgate.net/publication/324270007_Improved_Backcalculation_Procedure_for_Continuously_Reinforced_Concrete_Pavement. DOI: 10.1177/0361198118758010.
[16] Tabatabaie A M, Barenberg E J. Finite element analysis of jointed or cracked concrete pavements [J]. Transportation Research Record, 1978, 671: 11-18.
[17] Hoffman M S, Thompson M R. Mechanistic interpretation of nondestructive pavement testing deflections, UILU-ENG-81-2010 [R]. Urbana, USA: University of Illinois at Urbana-Champaign, 1981.
[18] American Association of State Highway and Transportation Officials. AASHTO guide for design of pavement structures [S]. Washington, DC, USA: American Association of State Highway and Transportation Officials, 1993.
[19] Ioannides A M. Dimensional analysis in NDT rigid pavement evaluation [J]. Journal of Transportation Engineering, 1990, 116(1): 23-36. DOI:10.1061/(asce)0733-947x(1990)116:1(23).
[20] Hall K T. Backcalculation solution for concrete pavements: Technical memo prepared for SHRP Contract P-020, long-term pavement performance data analysis [R]. Washington, DC, USA: National Research Council, 1992.
[21] Tayabji S D, Stephanos P J, Gagnon J S, et al. Performance of continuously reinforced concrete pavements volume Ⅱ: Field investigations of CRC pavements, FHWA-RD-94-179 [R]. Beltsville, Maryland: PCS/Law Engineering, 1998.
[22] Tayabji S D, Zollinger D G, Vederey J R, et al. Performance of continuously reinforced concrete pavements volume Ⅲ: Analysis and evaluation of field test data, FHWA-RD-94-180 [R]. Beltsville, Maryland: PCS/Law Engineering, 1998.
[23] Choi P, Kim D H, Lee B H, et al. Evaluation of structural responses of continuously reinforced concrete pavement(CRCP)using falling weight deflectometer[J]. Canadian Journal of Civil Engineering, 2016, 43(1): 28-39. DOI:10.1139/cjce-2015-0263.
[24] Ioannides A M, Khazanovich L, Becque J L. Structural evaluation of base layers in concrete pavement systems [J]. Transportation Research Record, 1992, 1370: 20-28.
[25] Westergaard H M. Stresses in concrete runways of airports [C]//19th Highway Research Board Annual Meeting. Washington, DC,USA, 1939, 19: 197-202.

相似文献/References:

[1]薛彦卿,黄晓明.基于NDT技术的脱空判别改进方法[J].东南大学学报(自然科学版),2012,42(6):1187.[doi:10.3969/j.issn.1001-0505.2012.06.030]
 Xue Yanqing,Huang Xiaoming.Improvement on recognition method of void beneath slab based on nondestructive testing technology[J].Journal of Southeast University (Natural Science Edition),2012,42(4):1187.[doi:10.3969/j.issn.1001-0505.2012.06.030]
[2]臧国帅,孙立军,陈长.基于虚拟惰性点的土基模量反演方法[J].东南大学学报(自然科学版),2017,47(6):1227.[doi:10.3969/j.issn.1001-0505.2017.06.023]
 Zang Guoshuai,Sun Lijun,Chen Zhang.Back-calculating method for subgrade modulus based on virtual inertial points[J].Journal of Southeast University (Natural Science Edition),2017,47(4):1227.[doi:10.3969/j.issn.1001-0505.2017.06.023]

备注/Memo

备注/Memo:
收稿日期: 2017-12-19.
作者简介: 张雅婷(1990—),女,博士生; 黄志义(联系人),男,博士,教授,博士生导师, hzy@zju.edu.cn.
基金项目: 国家留学基金资助项目(201506320161)、国家交通运输部资助项目(2011318806780)、美国伊利诺伊州收费公路局资助项目(RR-14-9168).
引用本文: 张雅婷,Jeffery Roesler,黄志义.基于FWD和温度梯度的CRCP反演方法修正[J].东南大学学报(自然科学版),2018,48(4):706-712. DOI:10.3969/j.issn.1001-0505.2018.04.017.
更新日期/Last Update: 2018-07-20