[1]郑彬双,朱晟泽,程永振,等.基于轮胎滑水模型的轮胎-沥青路面附着特性影响因素分析[J].东南大学学报(自然科学版),2018,48(4):719-725.[doi:10.3969/j.issn.1001-0505.2018.04.019]
 Zheng Binshuang,Zhu Shengze,Cheng Yongzhen,et al.Analysis on influence factors of adhesion characteristic of tire-asphalt pavement based on tire hydroplaning model[J].Journal of Southeast University (Natural Science Edition),2018,48(4):719-725.[doi:10.3969/j.issn.1001-0505.2018.04.019]
点击复制

基于轮胎滑水模型的轮胎-沥青路面附着特性影响因素分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第4期
页码:
719-725
栏目:
材料科学与工程
出版日期:
2018-07-20

文章信息/Info

Title:
Analysis on influence factors of adhesion characteristic of tire-asphalt pavement based on tire hydroplaning model
作者:
郑彬双1朱晟泽1程永振2黄晓明1
1东南大学交通学院, 南京 211189; 2淮阴工学院建筑工程学院, 淮安 223003
Author(s):
Zheng Binshuang1 Zhu Shengze1 Cheng Yongzhen2 Huang Xiaoming1
1School of Transportation, Southeast University, Nanjing 211189, China
2School of Architectural Engineering, Huaiyin Institute of Technology, Huaian 223003, China
关键词:
沥青路面 轮胎滑水模型 耦合欧拉-拉格朗日法 附着系数 滑移率
Keywords:
asphalt pavement tire hydroplaning model coupled Eulerian-Lagrangian method adhesion coefficient slip ratio
分类号:
TU528.1
DOI:
10.3969/j.issn.1001-0505.2018.04.019
摘要:
为研究轮胎与沥青路面之间的附着特性,基于耦合欧拉-拉格朗日法(CEL法)建立充气花纹轮胎滑水有限元模型,验证了滑水模型适用性, 计算出AC, SMA及OGFC三种沥青路面附着系数曲线.基于轮胎-路面附着特性理论,分析了制动防抱死系统(ABS)状态和潮湿条件下轮胎-路面附着特性影响因素.研究发现:胎路附着特性与轮胎运动状态有关,随滑移率增大轮胎受到的纵向附着系数先上升后下降,滑移率为15%左右时附着系数达到最大;在水膜厚度较小、轮胎压力较高时增大表面宏观纹理可提高路面抗滑性;平均断面深度(MPD)一定时,干燥路面较潮湿状态体现出更高的附着性能;相同水膜厚度时,附着系数随车速增加而不断减小,OGFC路面比AC路面和SMA路面具有更好的抗滑性能.
Abstract:
In order to study the adhesion performance between tire and asphalt pavement, the finite element model of patterned inflation tire hydroplaning was established based on the coupled Eulerian-Lagrangian(CEL)method. The applicability of the tire hydroplaning model was validated. Tire-pavement adhesion coefficient curves for three types of asphalt pavement of asphalt concrete(AC), stone mastic asphalt(SMA)and open graded friction course(OGFC)were calculated. According to the adhesion characteristic theory, factors affecting the adhesion characteristics of tire-asphalt pavement under the antilock braking system(ABS)state and wet condition were analyzed. The results show that the adhesion between tire and pavement is related to the tire movement state. With the increase of slip rate, the longitudinal adhesion coefficient of a tire increases first and then decreases. When the slip rate is about 15%, the adhesion coefficient reaches the maximum value. The deeper surface macroscopic texture can improve the road skid resistance when the water film thickness is smaller and the inflation pressure is higher. The dry pavement reflects higher adhesion performance than the wet state under the condition of a certain mean profile depth(MPD). With the same water film thickness, the adhesion coefficient decreases with the increase of driving velocity, and OGFC pavement has evidently better skid resistance than AC pavement and SMA pavement.

参考文献/References:

[1] Jones E R, Childers R L.Contemporary college physics[M].Tokyo, Japan: Addison-Wesley Pub. Co, 1993: 674.
[2] Gim G. An analytical model of pneumatic tyres for vehicle dynamic simulations, Part 1:Pure slips[J]. International Journal of Vehicle Design, 1990,11(6):589-618.
[3] Germann S, Wurtenberger M, Daiss A. Monitoring of the friction coefficient between tire and road surface[C]// Proceedings of the Third IEEE Conference on Control Applications. Glasgow, UK, 1994,1:613-618.DOI:10.1109/CCA.1994.381397.
[4] Pacejka H B, Bakker E. The magic formula tyre model[J].Vehicle System Dynamics,1992, 21(Sup1): 1-18.DOI:10.1080/00423119208969994.
[5] Ju F H, Fwa T F, Ong G P. Evaluating wet weather driving benefits of grooved pavements[J]. International Journal of Pavement Research & Technology, 2013, 6(4):287-293.
[6] Pasindu H R, Fwa T F. Improving wet-weather runway performance using trapezoidal grooving design[J]. Transportation in Developing Economies, 2015, 1(1): 1-10. DOI:10.1007/s40890-015-0001-6.
[7] Novikov I, Lazarev D. Experimental installation for calculation of road adhesion coefficient of locked car wheel[J]. Transportation Research Procedia, 2017, 20: 463-467. DOI:10.1016/j.trpro.2017.01.075.
[8] Ma B, Lü C, Liu Y H, et al. Estimation of road adhesion coefficient based on tire aligning torque distribution[J]. Journal of Dynamic Systems, Measurement, and Control, 2017, 140(5): 051010. DOI:10.1115/1.4038095.
[9] 朱晟泽,黄晓明.横向刻槽混凝土路面轮胎滑水速度数值模拟研究[J].东南大学学报(自然科学版),2016,46(6):1296-1300.DOI: 10. 3969 /j. issn. 1001-0505.2016.06.031.
Zhu Shengze, Huang Xiaoming. Numerical simulation of tire hydroplaning speed on transverse grooved concrete pavements[J]. Journal of Southeast University(Natural Science Edition), 2016,46(6):1296-1300.DOI:10. 3969 /j. issn. 1001- 0505. 2016. 06. 031. (in Chinese)
[10] Anupam K. Numerical simulation of vehicle hydroplaning and skid resistance on grooved pavement[D]. Singapore: Department of Civil Engineering, National University of Singapore, 2012.
[11] Benson D J. Computational methods in Lagrangian and Eulerian hydrocodes [J]. Computer Methods in Applied Mechanics and Engineering,1992, 99(2): 235-394.DOI:10.1016/0045-7825(92)90042-i.
[12] 刘修宇,曹青青,朱晟泽,等.沥青混凝土路面轮胎临界滑水速度数值模拟[J].东南大学学报(自然科学版),2017,47(5):1020-1025. DOI: 10. 3969 /j. issn. 1001-0505. 2017. 05. 028.
Liu Xiuyu, Cao Qingqing, Zhu Shengze, et al. Numerical simulation of tire critical hydroplaning speed on asphalt pavement[J]. Journal of Southeast University(Natural Science Edition), 2017,47(5):1020-1025. DOI:10. 3969 /j. issn. 1001-0505. 2017. 05. 028. (in Chinese)
[13] Persson B N J. Theory of rubber friction and contact mechanics[J]. The Journal of Chemical Physics, 2001, 115(8): 3840-3861. DOI:10.1063/1.1388626.
[14] 郭孔辉. UniTire 统一轮胎模型[J]. 机械工程学报, 2016, 52(12): 90-99. DOI:10.3901/JME.2016.12.090.
Guo Konghui. UniTire: Unified tire model[J]. Chinese Journal of Mechanical Engineering, 2016, 52(12): 90-99.DOI:10.3901/JME.2016.12.090. (in Chinese)
[15] Zhu S Z, Liu X, Cao Q Q, et al. Numerical study of tire hydroplaning based on power spectrum of asphalt pavement and kinetic friction coefficient[J]. Advances in Materials Science and Engineering, 2017, 2017:1-11.DOI:10.1155/2017/5843061.
[16] International Organization for Standardization. BS EN ISO13473-2:2002(E)Characterization of pavement texture by use of surface profiles—Part 2:Terminology and basic requirements related to pavement texture profile analysis[S].International Organization for Standardization, 2002.

相似文献/References:

[1]张璠,陈荣生,倪富健.排水性沥青路面混合料的渗透性能试验测试技术[J].东南大学学报(自然科学版),2010,40(6):1288.[doi:10.3969/j.issn.1001-0505.2010.06.030]
 Zhang Fan,Chen Rongsheng,Ni Fujian.Techniques of permeability testing for porous asphalt pavement mixture[J].Journal of Southeast University (Natural Science Edition),2010,40(4):1288.[doi:10.3969/j.issn.1001-0505.2010.06.030]
[2]李辉,黄晓明,张久鹏,等.基于连续变温的沥青路面车辙模拟分析[J].东南大学学报(自然科学版),2007,37(5):915.[doi:10.3969/j.issn.1001-0505.2007.05.035]
 Li Hui,Huang Xiaoming,Zhang Jiupeng,et al.Simulation analysis on rutting of asphalt pavements considering consecutive temperature variation[J].Journal of Southeast University (Natural Science Edition),2007,37(4):915.[doi:10.3969/j.issn.1001-0505.2007.05.035]
[3]钟勇强,黄晓明,廖公云,等.融沉变形对柔性路面应力应变影响试验研究[J].东南大学学报(自然科学版),2011,41(1):181.[doi:10.3969/j.issn.1001-0505.2011.01.035]
 Zhong Yongqiang,Huang Xiaoming,Liao Gongyun,et al.Influence of thawing settlement deformation on stress and strain in flexible pavement[J].Journal of Southeast University (Natural Science Edition),2011,41(4):181.[doi:10.3969/j.issn.1001-0505.2011.01.035]
[4]董元帅,唐伯明,刘清泉,等.基于弯沉盆参数的沥青路面动态弯沉综合修正系数[J].东南大学学报(自然科学版),2011,41(5):1081.[doi:10.3969/j.issn.1001-0505.2011.05.035]
 Dong Yuanshuai,Tang Boming,Liu Qingquan,et al.Dynamic synthetic deflection correction factor of asphalt pavement based on deflection basin parameters[J].Journal of Southeast University (Natural Science Edition),2011,41(4):1081.[doi:10.3969/j.issn.1001-0505.2011.05.035]
[5]李汉光,高英,余文斌.沥青混合料压实特性及沥青路面碾压遍数确定[J].东南大学学报(自然科学版),2011,41(1):186.[doi:10.3969/j.issn.1001-0505.2011.01.036]
 Li Hanguang,Gao Ying,Yu Wenbin.Compaction characteristics of hot mixed asphalt and number of roller passes[J].Journal of Southeast University (Natural Science Edition),2011,41(4):186.[doi:10.3969/j.issn.1001-0505.2011.01.036]
[6]张中琼,吴青柏,刘永智,等.青藏高原公路路面结构水热差异变化分析[J].东南大学学报(自然科学版),2015,45(5):975.[doi:10.3969/j.issn.1001-0505.2015.05.027]
 Zhang Zhongqiong,Wu Qingbai,Liu Yongzhi,et al.Analysis on hydrothermal difference changes of highway pavement structure on the Qinghai-Tibet Plateau[J].Journal of Southeast University (Natural Science Edition),2015,45(4):975.[doi:10.3969/j.issn.1001-0505.2015.05.027]
[7]武书华,陈华鑫,张久鹏,等.半刚性基层沥青路面层间界面力学特性与黏结状态的试验研究[J].东南大学学报(自然科学版),2016,46(2):406.[doi:10.3969/j.issn.1001-0505.2016.02.028]
 Wu Shuhua,Chen Huaxin,Zhang Jiupeng,et al.Experimental study on mechanical properties and bond condition at interlayer between asphalt surface and semi-rigid base[J].Journal of Southeast University (Natural Science Edition),2016,46(4):406.[doi:10.3969/j.issn.1001-0505.2016.02.028]
[8]李凌林,黄晓明,朱大勇,等.广义Kelvin模型在沥青路面中的应用[J].东南大学学报(自然科学版),2016,46(2):413.[doi:10.3969/j.issn.1001-0505.2016.02.029]
 Li Linglin,Huang Xiaoming,Zhu Dayong,et al.Application of generalized Kelvin model in asphalt pavement[J].Journal of Southeast University (Natural Science Edition),2016,46(4):413.[doi:10.3969/j.issn.1001-0505.2016.02.029]
[9]王元元,何亮,孙璐.矿料分异处理对沥青混合料抗滑性能的影响[J].东南大学学报(自然科学版),2017,47(6):1216.[doi:10.3969/j.issn.1001-0505.2017.06.021]
 Wang Yuanyuan,He Liang,Sun Lu.Effect of differentiation processing of mineral aggregate on asphalt pavement sliding resistance[J].Journal of Southeast University (Natural Science Edition),2017,47(4):1216.[doi:10.3969/j.issn.1001-0505.2017.06.021]
[10]臧国帅,孙立军,陈长.基于虚拟惰性点的土基模量反演方法[J].东南大学学报(自然科学版),2017,47(6):1227.[doi:10.3969/j.issn.1001-0505.2017.06.023]
 Zang Guoshuai,Sun Lijun,Chen Zhang.Back-calculating method for subgrade modulus based on virtual inertial points[J].Journal of Southeast University (Natural Science Edition),2017,47(4):1227.[doi:10.3969/j.issn.1001-0505.2017.06.023]

备注/Memo

备注/Memo:
收稿日期: 2018-01-15.
作者简介: 郑彬双(1988—), 女,博士生;黄晓明(联系人),男,博士,教授,博士生导师, huangxm@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(51778139).
引用本文: 郑彬双,朱晟泽,程永振,等.基于轮胎滑水模型的轮胎-沥青路面附着特性影响因素分析[J].东南大学学报(自然科学版),2018,48(4):719-725. DOI:10.3969/j.issn.1001-0505.2018.04.019.
更新日期/Last Update: 2018-07-20