[1]乔宗良,汤有飞,张蕾,等.超临界CO2-水分离器性能数值模拟[J].东南大学学报(自然科学版),2018,48(5):781-788.[doi:10.3969/j.issn.1001-0505.2018.05.001]
 Qiao Zongliang,Tang Youfei,Zhang Lei,et al.Numerical simulation of performance of supercritical CO2-water separators[J].Journal of Southeast University (Natural Science Edition),2018,48(5):781-788.[doi:10.3969/j.issn.1001-0505.2018.05.001]
点击复制

超临界CO2-水分离器性能数值模拟()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第5期
页码:
781-788
栏目:
交通运输工程
出版日期:
2018-09-20

文章信息/Info

Title:
Numerical simulation of performance of supercritical CO2-water separators
作者:
乔宗良1汤有飞1张蕾2董云山1司风琪1
1东南大学能源热转换及其过程测控教育部重点实验室, 南京 210096; 2南京科技职业学院智能制造学院, 南京 210048
Author(s):
Qiao Zongliang1 Tang Youfei1 Zhang Lei2 Dong Yunshan1 Si Fengqi1
1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
2School of Intelligent Manufacturing, Nanjing Polytechnic Institute, Nanjing 210048, China
关键词:
地热发电 超临界CO2 数值模拟 分离特性 分离效率 压降
Keywords:
geothermal power generation supercritical CO2 numerical simulation separation performance separation efficiency pressure drop
分类号:
TK11
DOI:
10.3969/j.issn.1001-0505.2018.05.001
摘要:
针对超临界二氧化碳地热发电系统中热回流后的超临界二氧化碳与盐水的分离情况,设计了一种双锥双入口旋流分离器,并通过数值模拟的方法研究了主要物性参数和运行参数对分离器性能的影响.采用RSM和DPM模型模拟液滴分离过程,结果表明,分离器内部存在内旋强制涡流和外部自由涡流,能够实现盐水的分离;分离器的分离效率随水滴粒径和入口速度的增大而升高,随入口水质量分数和溢流分流比的增大而降低,在入口速度为8 m/s时,粒径大于7 μm的水滴分离效率可达100%;入口速度和溢流分流比对分离器压降影响较大,在水质量分数为5%,满足分离效率为99%时,压降为0.15 MPa;在同时满 足分离效率和工质回收经济性的条件下,水质量分数为5%,10%和15%的3种工况的最佳溢流分流比分别为0.8,0.7和0.6.
Abstract:
The effective separation of supercritical carbon dioxide and water droplets was essential in the geothermal power generation system with supercritical carbon dioxide as the heat carrier. A double-cone double-inlet separator was designed, and the effects of main physical and adjustment parameters on performances of the separator were numerically simulated. The Reynolds stress model and discrete phase model were used to simulate the separation process. The results show that internal forced swirling and external free swirling inside the separator can separate the water droplets. When the droplet size and the inlet velocity increase, the separation efficiency increases, and the separator efficiency decreases with the increase of the water content and the overflow split ratio. At a speed of 8 m/s, the droplet separation efficiency of the droplet size larger than 7 μm can reach 100%. The inlet velocity and the overflow split ratio have a comparatively large influence on the pressure drop of the separator. When the water content is 5% and the separation efficiency is 99%, the pressure drop is 0.15 MPa. Under the condition of meeting both separation efficiency and economic recovery of supercritical carbon dioxide, the optimal overflow split ratios of water quality fractions of 5%, 10% and 15% were 0.8, 0.7 and 0.6, respectively.

参考文献/References:

[1] 史文峥, 杨萌萌, 张绪辉, 等. 燃煤电厂超低排放技术路线与协同脱除[J]. 中国电机工程学报, 2016, 36(16): 4308-4318,4513. DOI:10.13334/j.0258-8013.pcsee.161370.
Shi Wenzheng, Yang Mengmeng, Zhang Xuhui, et al. Ultra-low emission technical route of coal-fired power plants and the cooperative removal[J]. Proceedings of the CSEE, 2016, 36(16): 4308-4318,4513. DOI:10.13334/j.0258-8013.pcsee.161370. (in Chinese)
[2] 李小春,方志明,魏宁,等.我国CO2捕集与封存的技术路线探讨[J].岩土力学,2009,30(9):2674-2678.DOI:10.3969/j.issn.1000-7598.2009.09.022.
Li Xiaochun, Fang Zhiming, Wei Ning, et al. Discussion on technical roadmap of CO2 capture and storage in China[J]. Rock and Soil Mechanics, 2009,30(9):2674-2678. DOI:10.3969/j.issn.1000-7598.2009.09.022. (in Chinese)
[3] Crespi F,Gavagnin G,Sánchez D,et al.Supercritical carbon dioxide cycles for power generation: A review[J]. Applied Energy, 2017,195(1): 152-183.DOI:10.1016/j.apenergy.2017.02.048.
[4] 杨倩鹏,林伟杰,王月明,等.火力发电产业发展与前沿技术路线[J].中国电机工程学报,2017,37(13):3787-3794.DOI:10.13334/j.0258-8013.pcsee.170187.
Yang Qianpeng,Lin Weijie,Wang Yueming,et al.Industry development and frontier technology roadmap of thermal power generation[J]. Proceedings of the CSEE,2017,37(13):3787-3794. DOI:10.13334/j.0258-8013.pcsee.170187. (in Chinese)
[5] Zarrouk S J, Moon H. Efficiency of geothermal power plants: A worldwide review[J]. Geothermics, 2014, 51: 142-153. DOI:10.1016/j.geothermics.2013.11.001.
[6] Pruess K. Enhanced geothermal systems(EGS)using CO2 as working fluid-a novel approach for generating renewable energy with simultaneous sequestration of carbon[J]. Geothermics, 2006, 35(4): 351-367. DOI:10.1016/j.geothermics.2006.08.002.
[7] Atrens A D, Gurgenci H, Rudolph V. Economic optimization of a CO2-based EGS power plant[J]. Energy & Fuels, 2011, 25(8): 3765-3775. DOI:10.1021/ef200537n.
[8] Zhang Liang, Li Xin, Zhang Yin, et al. CO2 injection for geothermal development associated with EGR and geological storage in depleted high-temperature gas reservoirs [J]. Energy, 2017, 123(3): 139-148. DOI:10.1016/j.energy.2017.01.135.
[9] Li M Y, Lior N. Comparative analysis of power plant options for enhanced geothermal systems(EGS)[J]. Energies, 2014, 7(12): 8427-8445. DOI:10.3390/en7128427.
[10] Levy E K,Wang X C,Pan C J, et al. Use of hot supercritical CO2 produced from a geothermal reservoir to generate electric power in a gas turbine power generation system [J]. Journal of CO2 Utilization2, 2018, 23(2): 20-28. DOI:10.1016/j.jcou.2017.11.001.
[11] Pan C J, Chavez O, Romero C E,et al. Heat mining assessment for geothermal reservoirs in Mexico using supercritical CO2 injection [J]. Energy, 2016, 102: 148-160. DOI:10.1016/j.energy.2016.02.072.
[12] 赵庆国,张明贤.水力旋流器分离技术[M].北京:化学工业出版社,2003:2-10.
[13] 赵传伟,李增亮,邓良驹,等.井下双级串联式油水分离器工作特性研究[J].机械工程学报,2014,50(18):177-185.DOI:10.3901/JME.2014.18.177.
Zhao Chuanwei,Li Zengliang,Deng Liangju,et al.Research on operating characteristic of downhole dual-stage tandem oil-water separator[J]. Journal of Mechanical Engineering, 2014,50(18):177-185. DOI:10.3901/JME.2014.18.177. (in Chinese)
[14] 陆耀军, 沈熊, 周力行. 优选结构液-液旋流管分离特性[J]. 化工学报, 1999, 50(6): 758-765. DOI:10.3321/j.issn:0438-1157.1999.06.005.
Lu Yaojun, Shen Xiong, Zhou Lixing. Separation performance of innovative liquid-liquid hydrocyclone[J]. Journal of Chemical Industry and Engineering(China), 1999, 50(6): 758-765. DOI:10.3321/j.issn:0438-1157.1999.06.005. (in Chinese)
[15] Belaidi A, Thew M T.The effect of oil and gas content on the controllability and separation in a de-oiling hydrocyclone[J]. Chemical Engineering Research and Design,2003,81(3): 305-314. DOI:10.1205/02638760360596856.
[16] 袁惠新, 方勇, 付双成, 等. 旋流器的微米级颗粒分级性能分析[J]. 化工进展, 2017, 36(12): 4371-4377. DOI:10.16085/j.issn.1000-6613.2017-0625.
Yuan Huixin, Fang Yong, Fu Shuangcheng, et al. Analysis of the classification performance of micron particles with hydrocyclones[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4371-4377. DOI:10.16085/j.issn.1000-6613.2017-0625. (in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2018-03-27.
作者简介: 乔宗良(1981—),男,博士,讲师,qiaozongliang@seu.edu.cn.
引用本文: 乔宗良,汤有飞,张蕾,等.超临界CO2-水分离器性能数值模拟[J].东南大学学报(自然科学版),2018,48(5):781-788. DOI:10.3969/j.issn.1001-0505.2018.05.001.
更新日期/Last Update: 2018-09-20