[1]胡启洲,邓卫,李晓菡.城市道路车辆排放对大气污染的线性诊断模型[J].东南大学学报(自然科学版),2018,48(5):967-971.[doi:10.3969/j.issn.1001-0505.2018.05.028]
 Hu Qizhou,Deng Wei,Li Xiaohan.Linear diagnosis model of vehicle emission to air pollution on urban road[J].Journal of Southeast University (Natural Science Edition),2018,48(5):967-971.[doi:10.3969/j.issn.1001-0505.2018.05.028]
点击复制

城市道路车辆排放对大气污染的线性诊断模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第5期
页码:
967-971
栏目:
计算机科学与工程
出版日期:
2018-09-20

文章信息/Info

Title:
Linear diagnosis model of vehicle emission to air pollution on urban road
作者:
胡启洲1邓卫2李晓菡1
1南京理工大学自动化学院, 南京 210094; 2东南大学交通学院, 南京 210096
Author(s):
Hu Qizhou1 Deng Wei2 Li Xiaohan1
1School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
2School of Transportation, Southeast University, Nanjing 210096, China
关键词:
车辆排放 污染物 诊断模型 线性函数
Keywords:
vehicle emissions pollutants diagnosis model linear function
分类号:
TP311
DOI:
10.3969/j.issn.1001-0505.2018.05.028
摘要:
为了评价车辆排放对大气污染的污染程度,提出了一种诊断模型.通过在不同路段诊断车辆排放强度,构建车辆排放强度的函数式,探索车辆运行状况下车辆排放具有的时空相关性.并在此基础上,获得机动车各种排放污染物的单车排放因子,构建不同道路类型上不同车辆排放诊断模型;并在分析机动车排放特性和规律基础上,建立不同道路环境下机动车排放的函数关系式,提出车辆排放对大气污染的线性诊断模型.应用结果表明:在同等条件下,快速路、主干道、次干道和支路中,支路的污染最严重;重型、中型、轻型和微型等不同车型排放差别较大,即使同一车型在不同速度下排放量也不同,速度越大,污染物排放量越小;对车辆尾气排放程度的有效评估后,可进行大数据分析,利用Matlab软件实现车辆排放过程监测;4个车辆排放检测样本的有效误差为1.16%,1.35%,2.20%和0.80%,说明该模型误差小和具有较好的实用价值.
Abstract:
To evaluate the degree of air pollution caused by vehicle emissions, a diagnostic model was proposed. By diagnosing the intensity of vehicle emissions in different sections and constructing the intensity function of vehicle emissions, the spatio-temporal correlation of vehicle emission under the condition of vehicle operation was explored. And based on this, the vehicle emission factors of various emission pollutants were obtained, and the diagnosis models of different vehicle emissions on different road types were established. By analyzing the characteristics and laws of vehicle emissions, the functional relationship of vehicle emissions in different road environments was established, and a linear diagnostic model for air pollution caused by vehicle emissions is also proposed. The application results show that under the same condition of fast roads, main roads, secondary roads and branch roads, the pollution of branch roads is the most serious. In addition, the different types of vehicles(heavy, medium, light, and miniature types)have larger differences in their emissions. Even if the same type has different emissions at different speeds, the higher the speed, the smaller the pollutant emissions. Through effectively evaluating the degree of air pollution caused by vehicle emissions, the model can be used for realizing the monitoring process by Matlab software after big data analysis. The case study shows that the effective errors of the four vehicle emission detection samples are 1.16 %, 1.35%, 2.20%, and 0.80%. The model has advantages of high accuracy and small error, thus it has great practical value.

参考文献/References:

[1] 胡启洲, 吴鹏, 邓卫, 等. 车辆排放对大气污染的综合测度模型[J]. 东南大学学报(自然科学版), 2016, 46(4): 884-887. DOI:10.3969/j.issn.1001-0505.2016.04.035.
Hu Qizhou, Wu Peng, Deng Wei, et al. Comprehensive measure model for air pollution due to vehicle emissions[J]. Journal of Southeast University(Natural Science Edition), 2016, 46(4): 884-887. DOI:10.3969/j.issn.1001-0505.2016.04.035. (in Chinese)
[2] Agarwal A K,Bothra P,Gupta T,et al.An evaluation of the emission profile for two-wheelers at a traffic junction[J]. Particuology,2015,18: 112-119. DOI:10.1016/j.partic.2014.01.007.
[3] 吴鹏, 胡启洲, 杨莹, 等. 车辆排放对大气污染的模糊监测及神经预测模型[J]. 交通科技与经济, 2016, 18(6): 65-74. DOI:10.19348/j.cnki.issn1008-5696.2016.06.013.
Wu Peng, Hu Qizhou, Yang Ying, et al. The fuzzy monitoring and neural prediction model of vehicle emissions on air pollution[J]. Technology and Economy in Arcas of Communications, 2016, 18(6): 65-74. DOI:10.19348/j.cnki.issn1008-5696.2016.06.013. (in Chinese)
[4] Elkafoury A, Negm A M, Bady M F, et al. Modeling vehicular CO emissions for time headway-based environmental traffic management system[J]. Procedia Technology, 2015, 19: 341-348. DOI:10.1016/j.protcy.2015.02.049.
[5] Gori S,la Spada S,Mannini L, et al.Emission dynamic meso-simulation model to evaluate traffic strategies in congested urban networks[J].Intelligent Transport Systems, 2015,9(3):333-342.DOI:10.1049/iet-its.2013.0026.
[6] Anya A R, Rouphail N M, Frey H C, et al. Application of AIMSUN microsimulation model to estimate emissions on signalized arterial corridors[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014, 2428(1): 75-86. DOI:10.3141/2428-09.
[7] Sider T M N, Alam A, Farrell W, et al. Evaluating vehicular emissions with an integrated mesoscopic and microscopic traffic simulation[J]. Canadian Journal of Civil Engineering, 2014, 41(10): 856-868. DOI:10.1139/cjce-2013-0536.
[8] Yassin M F,Ohba M. Effect of street geometrical layout on dispersion emissions of traffic exhaust: Experimental simulation[J]. Clean Technologies and Environmental Policy, 2013, 15(1): 167-177. DOI:10.1007/s10098-012-0495-0.
[9] Liu H, Rönkkö T, Keskinen J. Impact of vehicle development and fuel quality on exhaust nanoparticle emissions of traffic[J]. Environmental Science & Technology, 2013,47(15):8091-8092.DOI:10.1021/es401805r.
[10] Daniela P,Paolo F,Gianfranco F,et al.Reduced urban traffic and emissions within urban consolidation centre schemes: the case of bristol[J]. Transportation Research Procedia,2014,3(3): 508-517. DOI:10.1016/j.trpro.2014.10.032.
[11] Alonso G,Benito A,Lonza L,et al.Investigations on the distribution of air transport traffic and CO2 emissions within the European Union[J]. Journal of Air Transport Management,2014,36(2): 85-93. DOI:10.1016/j.jairtraman.2013.12.019.
[12] 刘永红, 廖瀚博, 余志, 等. 基于环境影响的交叉口控制方式综合评估研究[J]. 中山大学学报(自然科学版), 2013, 52(1): 12-16. DOI:10.13471/j.cnki.acta.snus.2013.01.002.
Liu Yonghong, Liao Hanbo, Yu Zhi, et al. Study of intersection control mode evaluation based on environmental effect[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013, 52(1): 12-16. DOI:10.13471/j.cnki.acta.snus.2013.01.002. (in Chinese)
[13] Samaranayake S,Glaser S, Holstius D,et al.Real-time estimation of pollution emissions and dispersion from highway traffic[J].Computer-Aided Civil and Infrastructure Engineering,2014,29(7):546-558.DOI:10.1111/mice.12078.
[14] 陈璞珑,王体健,胡忻,等.南京市细颗粒物来源解析研究[J].南京大学学报(自然科学),2015,51(3):524-534.DOI:10.13232/j.cnki.jnju.2015.03.009.
  Chen Pulong, Wang Tijian, Hu Xin, et al.A study of chemical mass balance source apportionment of fine particulate matter in Nanjing[J].Journal of Nanjing University(Natural Sciences),2015, 51(3):524-534.(in Chinese)

相似文献/References:

[1]杨小丽,王世和,卢宁.膜生物反应器净化污水的抗冲击性能[J].东南大学学报(自然科学版),2005,35(5):797.[doi:10.3969/j.issn.1001-0505.2005.05.030]
 Yang Xiaoli,Wang Shihe,Lu Ning.Impact of shock loading on membrane bioreactor for sewage treatment[J].Journal of Southeast University (Natural Science Edition),2005,35(5):797.[doi:10.3969/j.issn.1001-0505.2005.05.030]
[2]余闯,方冬芳,杜广印,等.土介质中污染物迁移模型的同伦分析解[J].东南大学学报(自然科学版),2015,45(6):1185.[doi:10.3969/j.issn.1001-0505.2015.06.029]
 Yu Chuang,Fang Dongfang,Du Guangyin,et al.Homotopy analysis solutions of contaminant transport model in soil medium[J].Journal of Southeast University (Natural Science Edition),2015,45(5):1185.[doi:10.3969/j.issn.1001-0505.2015.06.029]
[3]胡启洲,吴鹏,邓卫,等.车辆排放对大气污染的综合测度模型[J].东南大学学报(自然科学版),2016,46(4):884.[doi:10.3969/j.issn.1001-0505.2016.04.035]
 Hu Qizhou,Wu Peng,Deng Wei,et al.Comprehensive measure model for air pollution due to vehicle emissions[J].Journal of Southeast University (Natural Science Edition),2016,46(5):884.[doi:10.3969/j.issn.1001-0505.2016.04.035]

备注/Memo

备注/Memo:
收稿日期: 2018-03-07.
作者简介: 胡启洲(1975—),男,博士,副教授,博士生导师, qizhouhu@163.com.
基金项目: 国家自然科学基金资助项目(51178157)、教育部人文社会科学研究资助项目(18YJAZH028)、江苏省”六大人才高峰”高层次人才资助项目(JXQC-021)、河南省重点科技攻关资助项目(182102310004)、江苏高校境外研修计划资助项目(201706).
引用本文: 胡启洲,邓卫,李晓菡.城市道路车辆排放对大气污染的线性诊断模型[J].东南大学学报(自然科学版),2018,48(5):967-971. DOI:10.3969/j.issn.1001-0505.2018.05.028.
更新日期/Last Update: 2018-09-20