[1]吴邵庆,范刚,李彦斌,等.复合材料梁弹性参数不确定性量化及试验验证[J].东南大学学报(自然科学版),2018,48(6):1004-1012.[doi:10.3969/j.issn.1001-0505.2018.06.004]
 Wu Shaoqing,Fan Gang,Li Yanbin,et al.Uncertainty quantification on elastic parameters of composite beams and its experimental verification[J].Journal of Southeast University (Natural Science Edition),2018,48(6):1004-1012.[doi:10.3969/j.issn.1001-0505.2018.06.004]
点击复制

复合材料梁弹性参数不确定性量化及试验验证()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第6期
页码:
1004-1012
栏目:
其他
出版日期:
2018-11-20

文章信息/Info

Title:
Uncertainty quantification on elastic parameters of composite beams and its experimental verification
作者:
吴邵庆12范刚12李彦斌23姜东23费庆国2
1东南大学土木工程学院, 南京 211189; 2东南大学空天机械动力学研究所, 南京 211189; 3东南大学机械工程学院, 南京 211189
Author(s):
Wu Shaoqing12 Fan Gang12 Li Yanbin23 Jiang Dong23 Fei Qingguo2
1School of Civil Engineering, Southeast University, Nanjing 211189, China
2Institute of Aerospace Machinery and Dynamics, Southeast University, Nanjing 211189, China
3School of Mechanical Engineering, Southeast University, Nanjing 211189, China
关键词:
复合材料梁 不确定性量化 小样本数据 贝叶斯理论 试验验证
Keywords:
composite beam uncertainty quantification small sample data Bayesian theory experimental verification
分类号:
V414.8
DOI:
10.3969/j.issn.1001-0505.2018.06.004
摘要:
为定量描述复合材料宏观力学性能的离散性,提出了仅有少量试验数据样本工况下,非均匀复合材料梁弹性模量的不确定性量化方法.基于梁不确定性弹性模量的谱分解模型,利用贝叶斯理论和蒙特卡罗模拟实现不确定性量化.对同一批次的复合材料梁开展试验研究,利用模态试验数据识别获得的梁弹性模量样本建立不确定性量化模型,并利用振动试验中实测动响应样本验证不确定性量化模型的正确性.该方法可以利用小样本试验数据,建立准确描述系统不确定性参数的量化模型,克服了传统概率模型需要大样本数据的缺陷,可以为复合材料结构的不确定性量化分析和可靠性评估提供参考.
Abstract:
An uncertainty quantification method was proposed for the elastic modulus of heterogeneous composite beams based on limited experimental data samples, to quantitatively describe the dispersity of the macroscopic mechanical properties of composites. With the spectral decomposition model of the uncertain elastic modulus of beams, the uncertainty quantification was achieved by the Bayesian theory and the Monte Carlo simulation. Experimental tests were conducted on the composite beams from the same batch, the uncertainty quantification model was constructed by the samples of the elastic modulus of beams identified from the modal test data, and the measured dynamic response samples from vibration tests were adopted to verify the correctness of the quantification model. The method can construct an accurate quantification model for uncertain system parameters with a small sample of experimental data. It overcomes the drawback of traditional probabilistic models which require large sample data. The proposed method provides references for the uncertainty quantification analysis and reliability evaluation of composite structures.

参考文献/References:

[1] 马立敏, 张嘉振, 岳广全, 等. 复合材料在新一代大型民用飞机中的应用[J]. 复合材料学报, 2015, 32(2): 317-322. DOI:10.13801/j.cnki.fhclxb.20150122.001.
Ma Limin, Zhang Jiazhen, Yue Guangquan, et al. Application of composites in new generation of large civil aircraft[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 317-322. DOI:10.13801/j.cnki.fhclxb.20150122.001. (in Chinese)
[2] 顾轶卓, 李敏, 李艳霞, 等. 飞行器结构用复合材料制造技术与工艺理论进展[J]. 航空学报, 2015, 36(8): 2773-2797. DOI:10.7527/S1000-6893.2015.0156.
Gu Yizhuo, Li Min, Li Yanxia, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2773-2797. DOI:10.7527/S1000-6893.2015.0156. (in Chinese)
[3] 胡丽娟, 张少睿, 李大永, 等. 细观参数对纤维增强金属基复合材料宏细观力学性能的影响[J]. 上海交通大学学报, 2008, 42(3): 475-479. DOI:10.3321/j.issn:1006-2467.2008.03.026.
Hu Lijuan, Zhang Shaorui, Li Dayong, et al. The influence of micro-parameters on macro-micromechanical properties of fiber reinforced metal matrix composites[J]. Journal of Shanghai Jiaotong University, 2008, 42(3): 475-479. DOI:10.3321/j.issn:1006-2467.2008.03.026. (in Chinese)
[4] 宋迎东, 孙志刚, 高希光. 纤维增强复合材料有效性能分散性[J]. 航空动力学报, 2005, 20(2): 230-235. DOI:10.3969/j.issn.1000-8055.2005.02.012.
Song Yingdong, Sun Zhigang, Gao Xiguang. Research on discrepancy of fiber reinforced composite effective performance [J]. Journal of Aerospace Power, 2005, 20(2): 230-235. DOI:10.3969/j.issn.1000-8055.2005.02.012. (in Chinese)
[5] Kim B R, Lee H K. An RVE-based micromechanical analysis of fiber-reinforced composites considering fiber size dependency[J].Composite Structures, 2009, 90(4): 418-427. DOI:10.1016/j.compstruct.2009.04.025.
[6] Potter K, Khan B,Wisnom M, et al. Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(9): 1343-1354. DOI:10.1016/j.compositesa.2008.04.016.
[7] Conceição A C, Hoffbauer L N. Uncertainty analysis based on sensitivity applied to angle-ply composite structures[J]. Reliability Engineering & System Safety, 2007, 92(10): 1353-1362. DOI:10.1016/j.ress.2006.09.006.
[8] Ngah M F, Young A. Application of the spectral stochastic finite element method for performance prediction of composite structures[J]. Composite Structures, 2007, 78(3): 447-456. DOI:10.1016/j.compstruct.2005.11.009.
[9] Chen N Z,Guedes S C. Spectral stochastic finite element analysis for laminated composite plates[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(51/52): 4830-4839. DOI:10.1016/j.cma.2008.07.003.
[10] Sepahvand K, Marburg S. Identification of composite uncertain material parameters from experimental modal data[J]. Probabilistic Engineering Mechanics, 2014, 37: 148-153. DOI:10.1016/j.probengmech.2014.06.008.
[11] Sepahvand K, Marburg S. Non-sampling inverse stochastic numerical-experimental identification of random elastic material parameters in composite plates[J]. Mechanical Systems and Signal Processing, 2015, 54-55: 172-181. DOI:10.1016/j.ymssp.2014.09.011.
[12] 姜东, 陆韬, 吴邵庆, 等. 2.5维C/SiC复合材料弹性参数不确定性识别方法研究[J]. 振动工程学报, 2014, 27(3):318-325. DOI:10.3969/j.issn.1004-4523.2014.03.002.
Jiang Dong, Lu Tao, Wu Shaoqing, et al. An elastic moduli identification method of 2.5 dimensional C/SiC composite with uncertainty[J]. Journal of Vibration Engineering, 2014, 27(3): 318-325. DOI:10.3969/j.issn.1004-4523.2014.03.002. (in Chinese)
[13] Jiang D, Li Y B,Fei Q G, et al. Prediction of uncertain elastic parameters of a braided composite[J]. Composite Structures, 2015, 126: 123-131. DOI:10.1016/j.compstruct.2015.02.004.
[14] 姜东, 吴邵庆, 费庆国, 等. 蜂窝夹层复合材料不确定性参数识别方法[J]. 振动与冲击, 2015, 34(2): 14-19. DOI:10.13465/j.cnki.jvs.2015.02.003.
Jiang Dong, Wu Shaoqing, Fei Qingguo, et al. Parameter identification approach of honeycomb sandwich composite with uncertainties[J]. Journal of Vibration and Shock, 2015, 34(2): 14-19. DOI:10.13465/j.cnki.jvs.2015.02.003. (in Chinese)
[15] Debruyne S, Vandepitte D, Moens D. Identification of design parameter variability of honeycomb sandwich beams from a study of limited available experimental dynamic structural response data[J]. Computers & Structures, 2015, 146: 197-213. DOI:10.1016/j.compstruc.2013.09.004.
[16] MacHado M R, Adhikari S, dos Santos J M C, et al. Estimation of beam material random field properties via sensitivity-based model updating using experimental frequency response functions[J]. Mechanical Systems and Signal Processing, 2018, 102: 180-197. DOI:10.1016/j.ymssp.2017.08.039.
[17] Ghanem R G, Doostan A. On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data[J]. Journal of Computational Physics, 2006, 217(1): 63-81. DOI:10.1016/j.jcp.2006.01.037.
[18] Desceliers C, Soize C, Ghanem R. Identification of chaos representations of elastic properties of random media using experimental vibration tests[J]. Computational Mechanics, 2007, 39(6): 831-838. DOI:10.1007/s00466-006-0072-7.
[19] Desceliers C, Ghanem R, Soize C. Maximum likelihood estimation of stochastic chaos representations from experimental data[J]. International Journal for Numerical Methods in Engineering, 2006, 66(6): 978-1001. DOI:10.1002/nme.1576.
[20] 王荣桥, 刘飞, 胡殿印, 等. 基于贝叶斯理论的低循环疲劳寿命模型不确定性量化[J]. 航空学报, 2017, 38(9): 244-253. DOI:10.7527/S1000-6893.2017.220832.
Wang Rongqiao, Liu Fei, Hu Dianyin, et al. Uncertainty quantification in low cycle fatigue life model based on Bayesian theory[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9): 244-253. DOI:10.7527/S1000-6893.2017.220832. (in Chinese)
[21] Scott D W. Multivariate density estimation[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. DOI:10.1002/9781118575574.
[22] Ghanem R G, Doostan A. On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data[J]. Journal of Computational Physics, 2006, 217(1): 63-81. DOI:10.1016/j.jcp.2006.01.037.
[23] Nobile F,Tempone R, Webster C G. An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data[J]. SIAM Journal on Numerical Analysis, 2008, 46(5): 2411-2442. DOI:10.1137/070680540.
[24] Sriramula S, Chryssanthopoulos M K. Quantification of uncertainty modelling in stochastic analysis of FRP composites[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(11): 1673-1684. DOI:10.1016/j.compositesa.2009.08.020.
[25] 范刚, 吴邵庆, 李彦斌, 等. 基于频响函数的复合材料空间分布模量场识别[J]. 航空学报, 2017, 38(8): 125-133. DOI:10.7527/S1000-6893.2017.221024.
Fan Gang, Wu Shaoqing, Li Yanbin, et al. Identification of spatial distribution of modulus field of composite material based on frequency response function[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(8): 125-133. DOI:10.7527/S1000-6893.2017.221024. (in Chinese)
[26] Sepahvand K, Marburg S. Spectral stochastic finite element method in vibroacoustic analysis of fiber-reinforced composites[J]. Procedia Engineering, 2017, 199: 1134-1139. DOI:10.1016/j.proeng.2017.09.241.

备注/Memo

备注/Memo:
收稿日期: 2018-05-29.
作者简介: 吴邵庆(1982—),男,博士,副教授,cesqwu@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(11402052,11602112,11802059)、江苏省自然科学基金资助项目(BK20170656, BK20180062).
引用本文: 吴邵庆,范刚,李彦斌,等.复合材料梁弹性参数不确定性量化及试验验证[J].东南大学学报(自然科学版),2018,48(6):1004-1012. DOI:10.3969/j.issn.1001-0505.2018.06.004.
更新日期/Last Update: 2018-11-20