[1]吴琪,杨文保,朱雨萌,等.砂-粉混合料小应变剪切模量弯曲元试验研究[J].东南大学学报(自然科学版),2018,48(6):1059-1067.[doi:10.3969/j.issn.1001-0505.2018.06.011]
 Wu Qi,Yang Wenbao,Zhu Yumeng,et al.Experimental study on small-strain shear modulus of sand-silt mixtures by bender element testing[J].Journal of Southeast University (Natural Science Edition),2018,48(6):1059-1067.[doi:10.3969/j.issn.1001-0505.2018.06.011]
点击复制

砂-粉混合料小应变剪切模量弯曲元试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第6期
页码:
1059-1067
栏目:
土木工程
出版日期:
2018-11-20

文章信息/Info

Title:
Experimental study on small-strain shear modulus of sand-silt mixtures by bender element testing
作者:
吴琪杨文保朱雨萌赵凯陈国兴
南京工业大学岩土工程研究所, 南京 210009
Author(s):
Wu Qi Yang Wenbao Zhu Yumeng Zhao Kai Chen Guoxing
Institute of Geotechnical Engineering, Nanjing Tech University, Nanjing 210009, China
关键词:
砂-粉混合料 小应变剪切模量 细粒含量 修正Hardin模型
Keywords:
sand-silt mixtures small-strain shear modulus fine content modified Hardin model
分类号:
TU411
DOI:
10.3969/j.issn.1001-0505.2018.06.011
摘要:
为探究细粒含量fcc、相对密度Drr以及初始有效围压σ′3c对饱和砂-粉混合料小应变剪切模量Gmax的影响,对具有不同fcc, Drr和σ′3c的混合料开展了一系列弯曲元试验.试验发现:随着fcc的增加,Drr = 35%,50%的混合料的Gmax先减小后略有增大,Drr=60%的混合料的Gmax逐渐减小;当Drr相同时,具有不同fcc的混合料的Gmax都随σ′3c的增大而增大,且Gmax随σ′3c的增长速率基本保持不变;当σ′3c相同时,Gmax随孔隙比的增大而减小,fcc对Gmax随孔隙比增大而减小的速率有明显影响.分析表明:当fcc确定时,Hardin模型能很好地预测Gmax,但随fcc的增大,模型参数A先减小后增大;考虑fcc,e和σ′3c对Gmax影响的修正Hardin模型能较好地预测不同类别砂-粉混合料的Gmax,且Gmax预测值的误差基本小于10%.
Abstract:
In order to investigate the influences of the fine content fc, relative density Dr, and initial effective confining pressure σ3c on the small-strain shear modulus Gmax of sand-silt mixtures, a series of bender element tests were performed on saturated sand-silt mixtures with various fc, Dr and σ3c. The test results show that, as fc increases, Gmax of the mixtures with Dr = 35% or 50% first decreases and then increases slightly, while Gmax for Dr = 60% case presents a decreasing tendency. σ3c causes an increase in Gmax with different fc at a given Dr, and the growth rate of Gmax with σ3c remains basically unchanged. In addition, Gmax decreases with the increase of the void ratio at a fixed σ′3c, and fc has a strong influence on the decreasing rate of Gmax at a constant σ3c. The testing results reveal that Gmax for a specified fc case can be estimated reasonably using the Hardin model. However, as fc increases, the best-fitting parameter A of the Hardin model first decreases and then increases. The modified Hardin model, considering the influences of fc, σ3c and e, can be used to predict Gmax for different types of sand-silt mixtures, and the errors of the predicted Gmax are basically less than 10%.

参考文献/References:

[1] Yang J, Yan X R. Site response to multi-directional earthquake loading: A practical procedure[J].Soil Dynamics and Earthquake Engineering, 2009, 29(4): 710-721. DOI:10.1016/j.soildyn.2008.07.008.
[2] Andrus R D, Stokoe K H II. Liquefaction resistance of soils from shear-wave velocity[J].Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(11): 1015-1025. DOI:10.1061/(asce)1090-0241(2000)126:11(1015).
[3] 孔梦云, 陈国兴, 李小军, 等. 以剪切波速与地表峰值加速度为依据的地震液化确定性及概率判别法[J]. 岩土力学, 2015, 36(5): 1239-1252,1260. DOI:10.16285/j.rsm.2015.05.002.
Kong Mengyun, Chen Guoxing, Li Xiaojun, et al. Shear wave velocity and peak ground acceleration based deterministic and probabilistic assessment of seismic soil liquefaction potential[J].Rock and Soil Mechanics, 2015, 36(5): 1239-1252,1260. DOI:10.16285/j.rsm.2015.05.002. (in Chinese)
[4] Clayton C R I. Stiffness at small strain:Research and practice[J]. Géotechnique, 2011, 61(1): 5-37. DOI:10.1680/geot.2011.61.1.5.
[5] Hardin B O, Black W L. Sand stiffness under various triaxial stresses[J]. Journal of Soil Mechanics & Foundations Division, 1966, 92(2): 27-42.
[6] McDowell G R, Bolton M D. Micro mechanics of elastic soil.[J].Soils and Foundations, 2001, 41(6): 147-152. DOI:10.3208/sandf.41.6_147.
[7] Drnevich V P. Resonant-column testing—problems and solutions[M]//Dynamic Geotechnical Testing. Philadelphia, USA: ASTM International, 1978: 384-398.
[8] Ishihara K. Soil behaviour in earthquake geotechnics[M]. Oxford, UK: Clarendon Press, 1996: 85-107.
[9] Taiebat M, Dafalias Y F. SANISAND: Simple anisotropic sand plasticity model[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(8): 915-948. DOI:10.1002/nag.651.
[10] Goudarzy M, Rahemi N, Rahman M M, et al. Predicting the maximum shear modulus of sands containing nonplastic fines[J].Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(9): 06017013. DOI:10.1061/(asce)gt. 1943-5606.0001760.
[11] Iwasaki T, Tatsuoka F. Effects of grain size and grading on dynamic shear moduli of sands[J].Soils and Foundations, 1977, 17(3): 19-35. DOI:10.3208/sandf1972.17.3_19.
[12] Yamashita S, Kawaguchi T, Nakata Y, et al. Interpretation of international parallel test on the measurement of gmax using bender elements[J].Soils and Foundations, 2009, 49(4): 631-650. DOI:10.3208/sandf.49.631.
[13] 陈云敏, 周燕国, 黄博. 利用弯曲元测试砂土剪切模量的国际平行试验[J]. 岩土工程学报, 2006, 28(7): 874-880. DOI:10.3321/j.issn: 1000-4548.2006.07.013.
Chen Yunmin, Zhou Yanguo, Huang Bo. International parallel test on the measurement of shear modulus of sand using bender elements[J].Chinese Journal of Geotechnical Engineering, 2006, 28(7): 874-880. DOI:10.3321/j.issn:1000-4548.2006.07.013. (in Chinese)
[14] Carraro J A H, Prezzi M, Salgado R. Shear strength and stiffness of sands containing plastic or nonplastic fines[J].Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(9): 1167-1178. DOI:10.1061/(asce)1090-0241(2009)135:9(1167).
[15] Iwasaki T, Tatsuoka F. Effects of grain size and grading on dynamic shear moduli of sands[J]. Soils and Foundations, 1977, 17(3): 19-35. DOI:10.3208/sandf1972.17.3_19.
[16] 中华人民共和国水利部. SL237—1999土的工程分类标准 [S]. 北京:中国水利水电出版社,2007.
[17] Polito C P, Martin J R Ⅱ. Effects of nonplastic fines on the liquefaction resistance of sands[J].Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(5): 408-415. DOI:10.1061/(asce)1090-0241(2001)127:5(408).
[18] Hsiao D H, Phan V T A, Hsieh Y T, et al. Engineering behavior and correlated parameters from obtained results of sand-silt mixtures[J].Soil Dynamics and Earthquake Engineering, 2015, 77: 137-151. DOI:10.1016/j.soildyn.2015.05.005.
[19] Salgado R, Bandini P, Karim A. Shear strength and stiffness of silty sand[J].Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(5): 451-462. DOI:10.1061/(asce)1090-0241(2000)126:5(451).
[20] Choo H, Burns S E. Shear wave velocity of granular mixtures of silica particles as a function of finer fraction, size ratios and void ratios[J].Granular Matter, 2015, 17(5): 567-578. DOI:10.1007/s10035-015-0580-2.
[21] Huang Y T, Huang A B, Kuo Y C, et al. A laboratory study on the undrained strength of a silty sand from Central Western Taiwan[J].Soil Dynamics and Earthquake Engineering, 2004, 24: 733-743. DOI:10.1016/j.soildyn.2004.06.013.
[22] Payan M, Khoshghalb A, Senetakis K, et al. Effect of particle shape and validity of G max models for sand: A critical review and a new expression[J]. Computers and Geotechnics, 2016, 72: 28-41. DOI:10.1016/j.compgeo.2015.11.003.
[23] Shirley D J, Hampton L D. Shear-wave measurements in laboratory sediments[J]. Journal of the Acoustical Society of America, 1978, 63(2): 607-613. DOI:10.1121/1.381760.
[24] 姬美秀, 陈云敏, 黄博. 弯曲元试验高精度测试土样剪切波速方法[J]. 岩土工程学报, 2003, 25(6): 732-736. DOI:10.3321/j.issn:1000-4548.2003.06.019.
Ji Meixiu, Chen Yunmin, Huang Bo. Method for precisely determining shear wave velocity of soil from bender element tests[J].Chinese Journal of Geotechnical Engineering, 2003, 25(6): 732-736. DOI:10.3321/j.issn:1000-4548.2003.06.019. (in Chinese)
[25] Lee J S, Santamarina J C. Bender elements: Performance and signal interpretation[J].Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(9): 1063-1070. DOI:10.1061/(asce)1090-0241(2005)131:9(1063).
[26] Chaney R, Demars K, Brignoli E, et al. Measurement of shear waves in laboratory specimens by means of piezoelectric transducers[J].Geotechnical Testing Journal, 1996, 19(4): 384-397. DOI:10.1520/gtj10716j.
[27] 柏立懂, 项伟, Savidis S A, 等. 干砂最大剪切模量的共振柱与弯曲元试验[J]. 岩土工程学报, 2012, 34(1): 184-188.
  Bai Lidong, Xiang Wei, Savidis A S, et al. Resonant column and bender element tests on maximum shear modulus of dry sand[J].Chinese Journal of Geotechnical Engineering, 2012, 34(1): 184-188.(in Chinese)
[28] Gu X Q, Yang J. A discrete element analysis of elastic properties of granular materials[J].Granular Matter, 2013, 15(2): 139-147. DOI: 10.1007/s10035-013-0390-3.
[29] Ishihara K. Liquefaction and flow failure during earthquakes[J].Géotechnique, 1993, 43(3): 351-451. DOI:10.1680/geot.1993.43.3.351.
[30] Skempton A W. The pore-pressure coefficients A and B[J]. Géotechnique, 1954, 4(4): 143-147. DOI:10.1680/geot.1954.4.4.143.
[31] Thevanayagam S, Martin G R. Liquefaction in silty soils: Screening and remediation issues[J].Soil Dynamics and Earthquake Engineering, 2002, 22(9/10/11/12): 1035-1042. DOI:10.1016/s0267-7261(02)00128-8.
[32] Yang J, Liu X. Shear wave velocity and stiffness of sand: The role of non-plastic fines[J].Géotechnique, 2016, 66(6): 500-514. DOI:10.1680/jgeot.15.p.205.
[33] Wichtmann T, Triantafyllidis T. Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus gmax[J].Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(10): 1404-1418. DOI:10.1061/(asce)gt.1943-5606.0000096.
[34] Rahman M M, Lo S R, Gnanendran C T. On equivalent granular void ratio and steady state behaviour of loose sand with fines[J].Canadian Geotechnical Journal, 2008, 45(10): 1439-1456. DOI:10.1139/t08-064.
[35] Payan M, Senetakis K, Khoshghalb A, et al. Characterization of the small-strain dynamic behaviour of silty sands: Contribution of silica non-plastic fines content[J]. Soil Dynamics and Earthquake Engineering, 2017, 102: 232-240. DOI:10.1016/j.soildyn.2017.08.008.

备注/Memo

备注/Memo:
收稿日期: 2018-05-15.
作者简介: 吴琪(1991—),男,博士生; 陈国兴(联系人),男,博士,教授,博士生导师, gxc6307@163.com.
基金项目: 国家自然科学基金资助项目(51438004, 51608267)、国家重点研发计划资助项目(2017YFC1500400).
引用本文: 吴琪,杨文保,朱雨萌,等.砂-粉混合料小应变剪切模量弯曲元试验研究[J].东南大学学报(自然科学版),2018,48(6):1059-1067. DOI:10.3969/j.issn.1001-0505.2018.06.011.
更新日期/Last Update: 2018-11-20