[1]洪俊,李建兴,沈月,等.多面体颗粒的接触识别及离散元动力学建模[J].东南大学学报(自然科学版),2018,48(6):1082-1087.[doi:10.3969/j.issn.1001-0505.2018.06.014]
 Hong Jun,Li Jianxing,Shen Yue,et al.Contact detection and dynamic model for polyhedral particles based on discrete element method[J].Journal of Southeast University (Natural Science Edition),2018,48(6):1082-1087.[doi:10.3969/j.issn.1001-0505.2018.06.014]
点击复制

多面体颗粒的接触识别及离散元动力学建模()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第6期
页码:
1082-1087
栏目:
数学、物理学、力学
出版日期:
2018-11-20

文章信息/Info

Title:
Contact detection and dynamic model for polyhedral particles based on discrete element method
作者:
洪俊李建兴沈月王潇
1东南大学土木工程学院, 南京 211189; 2东南大学江苏省工程力学分析重点实验室, 南京 211189
Author(s):
Hong Jun Li Jianxing Shen Yue Wang Xiao
1School of Civil Engineering, Southeast University, Nanjing 211189, China
2Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 211189, China
关键词:
多面体颗粒 接触识别 离散元法 接触力
Keywords:
polyhedral particles collision detection discrete element method(DEM) contact force
分类号:
O347.7
DOI:
10.3969/j.issn.1001-0505.2018.06.014
摘要:
为了模拟多面体颗粒的真实形状和运动过程,基于离散元法,采用有效的接触识别算法对多面体颗粒系统进行动力学建模.利用连接线性目录法建立可能接触颗粒对的邻居目录,采用改进的射线穿透法判断邻居目录中颗粒对是否真正接触.建立颗粒间的接触力模型,通过Verlet积分获得单个颗粒的运动轨迹,最终获得颗粒系统的整体运动状态,并对2个多面体颗粒系统自由堆积过程进行了数值模拟.模拟结果表明,对于多面体颗粒,连接线性目录法能够快速建立颗粒系统的邻居目录,改进的射线穿透法能有效地识别颗粒间各种复杂的接触情况,动力学模型能够真实地反映颗粒系统运动状态.改进的射线穿透法可以有效解决考虑多面体颗粒真实形状的颗粒系统离散元动力学建模问题.
Abstract:
In order to simulate the real shape and the motion of polyhedral particles, the dynamic model for a polyhedral particle system based on the discrete element method(DEM)was proposed by an efficient collision detection algorithm. The linked linear list method was used to establish the neighbor list of the adjacent particle pairs which may be in contact. The improved ray crossing method was applied to determine whether the particle pairs in the neighbor list were actually in contact. The model of the contact force between particles was established, and the motion of the single particle was described by the Verlet integral. Finally, the motion state of the whole particle system was obtained, and two numerical simulations of the packing of polyhedral particle system under gravity were carried out. The simulation results show that, for polyhedral particles, the linked linear list method can establish the neighbor list of the particle system at a high efficiency. The improved ray crossing method can efficiently detect various complex contacts between polyhedral particles. The dynamic model can objectively reflect the motion state of the polyhedral particle system. The improved ray crossing method can effectively solve the dynamic model problem of the polyhedral particle system considering the real shape of polyhedral particles.

参考文献/References:

[1] Zhong W Q, Yu A B, Liu X J, et al. DEM/CFD-DEM modelling of non-spherical particulate systems:Theoretical developments and applications[J]. Powder Technology, 2016, 302: 108-152. DOI:10.1016/j.powtec.2016.07.010.
[2] Rakotonirina A D, Delenne J Y, Radjai F, et al. Grains3D, a flexible DEM approach for particles of arbitrary convex shape—Part Ⅲ: Extension to non-convex particles modelled as glued convex particles[J]. Computational Particle Mechanics, 2018: 1-30. DOI:10.1007/s40571-018-0198-3.
[3] Lu G,Third J R, Köhl M H, et al. On the occurrence of polygon-shaped patterns in vibrated cylindrical granular beds[J]. The European Physical Journal E, 2012, 35(9): 1-5. DOI:10.1140/epje/i2012-12090-1.
[4] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. DOI: 10.1680/geot.1979.29.1.47.
[5] Cleary P W, Sinnott M D. Simulation of particle flows and breakage in crushers using DEM: Part 1—Compression crushers[J]. Minerals Engineering, 2015, 74: 178-197. DOI:10.1016/j.mineng.2014.10.021.
[6] Lisjak A, Grasselli G. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(4): 301-314. DOI:10.1016/j.jrmge.2013.12.007.
[7] Lu G, Third J R, Müller C R. Discrete element models for non-spherical particle systems: From theoretical developments to applications[J]. Chemical Engineering Science, 2015, 127: 425-465. DOI:10.1016/j.ces.2014.11.050.
[8] Alonso-Marroquín F, Vardoulakis I, Herrmann H J, et al. Effect of rolling on dissipation in fault gauges[J]. Physical Review Letters E, 2006, 74(3): 031306. DOI:10.1103/PhysRevE.74.031306.
[9] Cleary P W. DEM prediction of industrial and geophysical particle flows[J]. Particuology, 2010, 8(2): 106-118. DOI:10.1016/j.partic.2009.05.006.
[10] Cundall P A. Formulation of a three-dimensional distinct element model: Part Ⅰ. A scheme to detect and represent contacts in a system composed of many polyhedral blocks[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(3): 107-116. DOI:10.1016/0148-9062(88)92293-0.
[11] Alobaid F, Baraki N, Epple B. Investigation into improving the efficiency and accuracy of CFD/DEM simulations[J]. Particuology, 2014, 16: 41-53. DOI:10.1016/j.partic.2013.11.004.
[12] Wachs A, Girolami L, Vinay G, et al. Grains3D, a flexible DEM approach for particles of arbitrary convex shape: Part Ⅰ: Numerical model and validations[J]. Powder Technology, 2012, 224: 374-389. DOI:10.1016/j.powtec.2012.03.023.
[13] Gilbert E G, Johnson D W, Keerthi S S. A fast procedure for computing the distance between complex objects in three-dimensional space[J]. IEEE Journal on Robotics and Automation, 1988, 4(2): 193-203. DOI:10.1109/56.2083.
[14] O′Rourke J. Computational geometry in C[M]. Cambridge: Cambridge University Press, 1998: 220-250.
[15] Muth B, Müller M K, Eberhard P, et al. Collision detection and administration methods for many particles with different sizes[J]. Human Vaccines, 2017, 6(7):524-527.
[16] 洪俊, 张镇, 刘俊, 等. 梯形载荷下伴随破碎的散粒体系统动力学分析[J]. 东南大学学报(自然科学版), 2015,45(4): 787-791. DOI:10.3969/j.issn.1001-0505.2015.04.030.
Hong Jun, Zhang Zhen, Liu Jun, et al. Dynamic analysis of granular system with fracture under ladder load[J]. Journal of Southeast University(Natural Science Edition), 2015, 45(4): 787-791. DOI:10.3969/j.issn.1001-0505.2015.04.030. (in Chinese)
[17] D?iugys A, Peters B. An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers[J]. Granular Matter, 2001, 3(4): 231-266. DOI:10.1007/pl00010918.

备注/Memo

备注/Memo:
收稿日期: 2018-05-14.
作者简介: 洪俊(1978—),男,博士,副教授,junhong@seu.edu.cn.
基金项目: 国家自然科学基金资助项目(11772091).
引用本文: 洪俊,李建兴,沈月,等.多面体颗粒的接触识别及离散元动力学建模[J].东南大学学报(自然科学版),2018,48(6):1082-1087. DOI:10.3969/j.issn.1001-0505.2018.06.014.
更新日期/Last Update: 2018-11-20