[1]郑敏,董卫,乔正辉,等.非均匀热场对PZT微型固态热机有效性影响的试验研究[J].东南大学学报(自然科学版),2018,48(6):1152-1158.[doi:10.3969/j.issn.1001-0505.2018.06.024]
 Zheng Min,Dong Wei,Qiao Zhenghui,et al.Effects of non-uniform thermal fields on effectiveness of PZT micro-solid heat engine[J].Journal of Southeast University (Natural Science Edition),2018,48(6):1152-1158.[doi:10.3969/j.issn.1001-0505.2018.06.024]
点击复制

非均匀热场对PZT微型固态热机有效性影响的试验研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
48
期数:
2018年第6期
页码:
1152-1158
栏目:
能源与动力工程
出版日期:
2018-11-20

文章信息/Info

Title:
Effects of non-uniform thermal fields on effectiveness of PZT micro-solid heat engine
作者:
郑敏董卫乔正辉周树青金亚伟
东南大学能源与环境学院, 南京 210096
Author(s):
Zheng Min Dong Wei Qiao Zhenghui Zhou Shuqing Jin Yawei
School of Energy and Environment, Southeast University, Nanjing210096, China
关键词:
非均匀热场 固态热机 红外成像 热电转换
Keywords:
non-uniform thermal field solid heat engine infrared thermographs thermoelectric conversion
分类号:
TK01
DOI:
10.3969/j.issn.1001-0505.2018.06.024
摘要:
为了研究非均匀热场对微型固态热机热电转换有效性的影响,基于PZT材料的热释电效应设计了3种不同表面吸收率分布的微型固态热机样本. 其中,1号微型固态热机是未经处理的低吸收率均匀分布表面;2号微型固态热机是全覆盖碳墨层的高吸收率均匀分布表面;3号微型固态热机是局部覆盖碳墨层的非均匀吸收率分布表面. 在恒定光源和交变光源激发下对3个微型固态热机样本的温度和电压响应进行了试验研究. 结果表明:在相同的恒定输入功率条件下,热机的电压响应值主要受第一热释电效应的影响,温度变化率越大,电压响应值越大;在相同的交变输入功率条件下,因非均匀热场产生的第三热释电效应对电压输出的贡献增强,3号微型固态热机电压输出最大,为-0.84~0.96 V,比2号微型固态热机输出电压高80%,比1号热机电压输出电压提高275%.
Abstract:
To study the effects of non-uniform thermal field on the effectiveness of thermoelectric conversion of micro-solid heat engine, based on the pyroelectric effect of lead zirconate titanate(PZT)material, three testing samples of the micro-solid heat engine with different absorptivity distributions were designed. The No.1 sample is of untreated and uniform low absorptivity distributed surface; the No.2 is of uniform high absorptivity distributed surface covered fully by carbon ink layer and the No.3 is of non-uniform absorptivity distributed surface covered by local carbon ink layer. The temperature and voltage responses of three testing samples were experimentally studied under the input of constant light and alternating light source. The results show that under the condition of the same constant input power, the value of the output voltage of the heat engine is mainly affected by the first pyroelectric effects, the higher the temperature change rate, the higher the voltage response. Under the condition of alternating input power, the contribution of the third pyroelectric effect to the voltage output is enhanced by the non-uniform thermal field, No.3 has maximum voltage output -0.84 to 0.96 V, 80%, higher than that of the No.2 and 275% higher than that of No.1.

参考文献/References:

[1] Yang Y, Guo W X, Pradel K C, et al. Pyroelectric nanogenerators for harvesting thermoelectric energy[J]. Nano Letters, 2012, 12(6): 2833-2838. DOI:10.1021/nl3003039.
[2] Leng Q, Chen L, Guo H Y, et al. Harvesting heat energy from hot/cold water with a pyroelectric generator[J]. J Mater Chem A, 2014, 2(30): 11940-11947. DOI:10.1039/c4ta01782j.
[3] 赵江铭,邱国林,张海霞. 一种基于PVDF的微型热释电发电机研究[J]. 郑州大学学报(工学版), 2016,37(6): 34-37. DOI:10.13705/j.issn.1671-6833.2016.06.015.
Zhao Jiangming, Qiu Guolin, Zhang Haixia. A micro pyroelectric generator based on PVDF[J]. Journal of Zhengzhou University(Engineering Science),2016,37(6): 34-37. DOI:10.13705/j.issn.1671-6833.2016.06.015. (in Chinese)
[4] Battista L, Mecozzi L, Coppola S, et al. Graphene and carbon black nano-composite polymer absorbers for a pyro-electric solar energy harvesting device based on LiNbO3 crystals[J]. Applied Energy, 2014, 136: 357-362. DOI:10.1016/j.apenergy.2014.09.035.
[5] Zabek D, Seunarine K, Spacie C, et al. Graphene ink laminate structures on poly(vinylidene difluoride)(PVDF)for pyroelectric thermal energy harvesting and waste heat recovery[J]. ACS Applied Materials & Interfaces, 2017, 9(10): 9161-9167. DOI:10.1021/acsami.6b16477.
[6] El Fatnani F Z, Guyomar D, Mazroui M, et al. Optimization and improvement of thermal energy harvesting by using pyroelectric materials[J]. Optical Materials, 2016, 56: 22-26. DOI:10.1016/j.optmat.2016.01.048.
[7] Zhang Q, Agbossou A, Feng Z H, et al. Solar micro-energy harvesting with pyroelectric effect and wind flow[J]. Sensors and Actuators A: Physical, 2011, 168(2): 335-342. DOI:10.1016/j.sna.2011.04.045.
[8] Dalola S, Ferrari V, Marioli D. Pyroelectric effect in PZT thick films for thermal energy harvesting in low-power sensors[J]. Procedia Engineering, 2010, 5: 685-688. DOI:10.1016/j.proeng.2010.09.202.
[9] Wang X Q, Tan C F, Chan K H, et al. Nanophotonic-engineered photothermal harnessing for waste heat management and pyroelectric generation[J]. ACS Nano, 2017, 11(10): 10568-10574. DOI:10.1021/acsnano.7b06025.
[10] van der Ziel A. Solar power generation with the pyroelectric effect[J]. Journal of Applied Physics, 1974, 45(9): 4128. DOI:10.1063/1.1663926.
[11] Ikura M. Conversion of low-grade heat to electricity using pyroelectric copolymer[J]. Ferroelectrics, 2002, 267(1): 403-408. DOI:10.1080/713715909.
[12] Khodayari A, Pruvost S, Sebald G, et al. Nonlinear pyroelectric energy harvesting from relaxor single crystals[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2009, 56(4): 693-699. DOI:10.1109/tuffc.2009.1092.
[13] Kosorotov V F, Kremenchugskij L S, Levash L V, et al. Tertiary pyroelectric effect in lithium niobate and lithium tantalate crystals[J]. Ferroelectrics, 1986, 70(1): 27-37. DOI:10.1080/00150198608221418.
[14] 吴仲武,董卫,乔正辉,等. 一种小型热释电能量转换装置的特性分析[J]. 热科学与技术, 2013,12(2):162-167. DOI:10.3969/j.issn.1671-8097.2013.02.013.
Wu Zhongwu, Dong Wei, Qiao Zhenghui,et al. Characteristic analysis of small-scale pyroelectric energy conversion device[J]. Journal of Thermal Science and Technology, 2013,12(2):162-167. DOI:10.3969/j.issn.1671-8097.2013.02.013. (in Chinese)

备注/Memo

备注/Memo:
收稿日期: 2018-04-03.
作者简介: 郑敏(1994—),女,硕士生;董卫(联系人),男,博士,教授,dongwei59@seu.edu.cn.
基金项目: 中央高校基本科研业务费专项资金资助项目(3203008101).
引用本文: 郑敏, 董卫, 乔正辉,等.非均匀热场对PZT微型固态热机有效性影响的试验研究[J].东南大学学报(自然科学版),2018,48(6):1152-1158. DOI:10.3969/j.issn.1001-0505.2018.06.024.
更新日期/Last Update: 2018-11-20